Program: SE Information Technology

Curriculum Scheme: Rev-2019

Examination: Second year semester III

Course Code: ITC301 and Course Name: Engineering Mathematics-III

MCQ_SECTION

Time: 40 Min

Max. Marks: 40

1] All questions are Compulsory

2] Assume suitable data wherever required.

Q1.	$L[t^{\frac{5}{2}}]$ is
Option A:	3
	$4s^{\frac{3}{2}}$
	_
Option B:	$\frac{3\sqrt{\pi}}{5}$
	$4s^{\frac{5}{2}}$
Option C:	$5\sqrt{\pi}$
	$4s^{\frac{5}{2}}$
Option D:	$15\sqrt{\pi}$
	$8s^{\frac{7}{2}}$
Q2.	L [f(t)] = $\frac{1}{s\sqrt{s+1}}$ then L [$e^{-2t}f(t)$] is
Option A:	
	$(s+2)\sqrt{s+3}$
Option B:	1
	$\overline{(s+2)\sqrt{s+2}}$
Option C:	1
	$\overline{(s-2)\sqrt{s-1}}$

Option D:	1
	$\frac{1}{(s-1)\sqrt{s}}$
	$(3-1)\sqrt{3}$
03	1 S+2]
Q3.	Find $L^{-1}\left[\frac{3+2}{(s+2)^2-16}\right]$
Option A:	e ^{2t} cosh4t
Option B:	$e^{-2t}sinh4t$
Option C:	$e^{-2t}cosh4t$
Option D:	e ^{2t} sinh4t
1	
Q4.	$[\Gamma_{i}] = 1 \begin{bmatrix} 1 \end{bmatrix}$
	Find $L = \left[\frac{1}{(s+4)^{3/2}}\right]$
Option A:	$2 - 4t \pi$
	$2e^{-t}\sqrt{\frac{t}{t}}$
Option B:	$-At \pi$
_	$e^{-\tau t}\sqrt{\frac{1}{t}}$
Option C:	$a \neq t$
-	$e^{4\iota}\sqrt{\pi}$
Option D:	- $t = t$
1	$2e^{-4t}\sqrt{\frac{c}{\pi}}$
05.	The probability that a 3-card hand drawn at random and without
	replacement from an ordinary deck consist entirely of black card is:
Option A:	1
1	17
Option B:	3
-	17
Option C:	2
	17
Option D:	1
	8
Q6.	A, B, C hit a target with probabilities $1/2$, $2/3$, $3/4$ respectively. If
	all of them fire at the target, the probability p that at least one of
	them hits the target is:

Option A:	1			
	$\overline{24}$			
Option B:	23			
	24			
Option C:	7			
	12			
Option D:				
	12			
07				
Q7.	The probability density function of a discrete random variable X is			
	given by the formula $P(x) = kx^2$, $x = 0,1,2,3$; the value of			
	constant k is:			
Option A:				
Ontion P:	14			
Option B .				
Option C [.]	1			
Option C.	$\frac{1}{6}$			
Option D [.]	6			
Q8.	The expected value for a random variable is			
Option A:	the long-run average.			
Option B:	the most likely value.			
Option C:	the most frequent value observed in a random sample of observations			
	of the random variable.			
Option D:	always np.			
Q9.	The function $f(z) = e^z$ is			
Option A:	Analytic			
Option B:	Hyperbolic			
Option C:	Not Analytic			
Option D:	Elliptic			
Q10.	The imaginary part of $f(z) = cosz$ is			
Option A:	-sinx coshy			
Option B:	coshx cosy			
Option C:	-sinx sinhy			

Q11.	The analytic function corresponding to real part $e^{-x}siny$ is			
Option A:	$f(z) = e^z + c$			
Option B:	$f(z) = e^{-z} + c$			
Option C:	$f(z) = ie^z + c$			
Option D:	$f(z) = ie^{-z} + c$			
Q12.	The analytic function corresponding to imaginary part $3x^2y - y^3$ is			
Option A:	$f(z) = z^2 + c$			
Option B:	$f(z) = \overline{z^3 + c}$			
Option C:	$f(z) = -z^2 + c$			
Option D:	$f(z) = -z^3 + c$			
Q13.	Which of these is not Dirichlet's conditions for a function $f(x)$ to be			
	expanded in a Fourier series in the interval (0,2L)			
Option A:	f(x) may have discontinuities, finite in number			
Option B:	f(x) may have maxima and minima, finite in number			
Option C:	f(x) is single valued			
Option D:	f(x) is always an even function			
Q14.	If $f(x)$ is an odd function, then the Fourier series for $f(x)$ is a			
Option A:	Cosine series			
Option B:	Sine series			
Option C:	Contains both sine series and cosine series			
Option D:	neither sine series nor cosine series			
Q15.	The fourier series for $f(x) = sinx $ in $[-\pi, \pi]$			
Option A:	Will have sine terms			
Option B:	Will have cosine terms			
Option C:	Is zero			
Option D:	Doesn't exist			
	2			
Q16.	If $f(x) = x^2$ in $[-\pi, \pi]$ then what is the value of the first term in the			
	series $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$			
Option A:	π^2			
	3			
Option B:	$\frac{3}{\pi^2}$			

Option C:	π^2			
	$\frac{1}{2}$			
Option D:	π			
1	3			
Q17.	The slope of the line of regression of y on x is called			
Option A:	Coefficient of correlation			
Option B:	Rank correlation coefficient			
Option C:	Regression coefficient of y on x			
Option D:	Regression coefficient of x on y			
Q18.	Correlation coefficient is themean between the			
	regression coefficients			
Option A:	Arithmetic			
Option B:	Geometric			
Option C:	Harmonic			
Option D:	Weighted			
Q19.	Regression coefficient are independent of the			
Option A:	Change of origin			
Option B:	Change of scale			
Option C:	Change of origin but not scale			
Option D:	Change of origin and scale			
Q20.	Let the regression equation of y on x be x - $2y + 5 = 0$ then b_{yx} is			
	equal to			
Option A:	-2			
Option B:	1			
Option C:	5			
Option D:	1/2			

DESCRIPTIVE_SECTION

Time: 1.20 Hrs.

Max. Marks: 40

Attempt all questions.

Q2	Solve any Four out of six	5 Marks each
А	Find Laplace Transformation of $t\sqrt{1 + \sin t}$	
В	Find $L^{-1}\left(\frac{(s+3)}{(s^2+6s+13)^2}\right)$ using Convolution Theorem	
С	If $f(x) = 9 - x^2$ for -3 <x<3, fourier="" obtain="" of<="" series="" td=""><td>f(x) in [-3, 3].</td></x<3,>	f(x) in [-3, 3].
D	Construct the analytic function whose real part is $e^{2x}(x \cos 2y - y \sin 2y)$	
Е	The no. of pairs of observation of x and y are 1000 $\sigma_x = 4.5$; $\sigma_y = 3.6$; $\sum (x - \bar{x})(y - \bar{y}) =$ Calculate the coefficient of correlation between x a	= 4800 nd y series.
F	In a certain college, 4% of the boys and 1% of the gamma 1.8m. Furthermore 60% of the students are girls. selected at random and found to be taller than probability that the student is a girl?	girls are taller than If the students are 1.8m, what is the
03	Solve any Four out of six	5 Marks each
A	Find Laplace transformation of $\frac{e^{-2t} \sin(2t) \cosh t}{t}$	
В	Find the half range sine series of $f(x) = x^2 in (0, \pi)$	7)
С	Find the orthogonal trajectories of the family of cur $3x^2y - y^3 = c$	rves
D	The two regression lines are $4x - 5y + 33 = 0$; 20 and variance of x = 25. Find i) mean of x & y ii) Coefficient of correlation	0x - 9y = 107

	iii) Variance of y
Е	Two persons A and B toss an unbiased coin alternately on the
	understanding that the first who gets head wins. If A starts the game,
	find their respective chance of winning.
F	Find
	$L^{-1}\left(\frac{2s^2 - 15s - 11}{(s+2)(s-3)^2}\right)$