(Time:03 Hours)

(Total Marks:80)

Instructions

1. Question ONE is compulsory

- 2. Attempt any three out of remaining five questions.
- 3. Assume appropriate data and state your reasons
- 4. Marks are given right of the every question

	8 2 8 8 8 8
1(a) Differentiate between Exhaustive and Effective testing	5M
1(b) Define the following with example.	5M
i) Failure ii) Fault iii) Error	513
1(c) Explain Life cycle of a bug.	5M
1(d) Differentiate between CFG and DFG.	5M
2(a) A program reads an integer number within the range [1,100] and determines whether it is a prime number or not. Design the test cases for this program using boundary value analysis.2(b) Justify how mutation testing is effective to check the quality of software with an example.	10M 10M
3(a) Draw the control flow graph and find the cyclomatic complexity for a program largest	
of three numbers.	10M
3(b) Explain the different types of Incremental Integration Testing Methods.	10M
4(a) Briefly explain prioritization techniques.	10M
4(b)What is the need of software measurement? Explain different size metrics.	10M
5(a) Create a case study on application of ISO 9000 framework to an educational institute.	10M
5(b) Explain the guidelines for automated testing.	10M
6. Write Short notes on	
(a) Issues in Object Oriented Testing.	5M
(b) STLC.	5M
(c) Challenges in Testing Data Ware house.	5M
(d) Test Suite Minimization Problem.	5M

		Time: 5 flours Marks: 50	30,000
Instruc	tions		30,30
1)	Q.1.	is compulsory	130 S
2)	Atte	empt any three from the remaining	
3)		ume suitable data	
Q.1.	(a)	Explain Blooms filter for stream data mining.	(5)
Q.1.	(b)	Find the jaccard distance and cosine distance between the following pairs of set: $X=(0,1,2,4,5,3)$ and $Y=(5,6,7,9,10,8)$.	(5)
	(c)	Explain the steps of the HITS algorithm.	(5)
	(d)	Explain "Shuffle & Sort" phase and "Reducer Phase" in Map Reduce.	(5)
Q.2.	(a)	Write a Map reduce pseudo code to multiply two matrices. Illustrate with an example showing all the steps.	(10)
	(b)	Explain Hadoop Ecosystem with core components. Explain its physical architecture. State the limitations of Hadoop.	(10)
Q.3.	(a)	Suppose a data stream consists of the integers $1,3,2,1,2,3,4,3,1,2,3,1$. Let the Hash function being used is $h(x) = (6x+1) \mod 5$; estimate the number of distinct in this stream using Flajolet - Martin algorithm.	(10)
	(b)	Distinguish the following: a) PCY, Multistage	(10)
		b) Document data store and Column family data store	
Q.4.	(a)	Give two applications for counting the number of 1's in a long stream of binary values. Using a stream of binary digits, Illustrate how DGIM will find the number of 1's.	(10)
	(b)	For the given graph show how clique percolation method will find cliques.	(10)
		3 2 5	
Q.5.	(a)	Consider the web graph given below with six pages (A, B, C, D, E, F) with directed links as follows. $A \rightarrow B, C$ $B \rightarrow A, D, E, F$	(10)
		C \Rightarrow AF Assume that the PageRank values for any page m at iteration 0 is PR(m)=1 and teleportation factor for iterations is β =0.85. Perform the page rank algorithm and determine the rank for every page at iteration 2.	
	(b)		(10)
Q.6.	(a)		(10)
	(b)	(2) 6) (2) (5) (5)	(10)
I AM I AM			

				(3	3 Hours)			Max	k. Marks: 8	0
N.B.:	. ,	Question No. 2	_	•				47 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	300000000000000000000000000000000000000	
		Attempt any T	_			_	F ive ques	tions.		
		Figures to the				•	9		7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	(4)	Assume suitab	ole data if	necess	sary.		82		43.47.26	0,000
Q.1	a	Explain with neat diagram supervised and unsupervised learning in NN								
Ų.1	b	Explain with heat diagram supervised and unsupervised learning in NN Explain different activation functions in NN								
	c									
	d	Explain with example any 2 operators involved in simple GA Explain different defuzzification techniques.								
	u	Explain uni	iereni uen	ızzıiic	ation teen	inques.				200 of
Q.2	a	Design Hebb Net to implement logical AND function. Use bipolar inputs and targets.								
	b	Explain Error back propagation training Algorithm with the help of flowchart.								
		Emplain Em	or ouch pr	opugu	2000				800 K	1,00°
Q.3	a	Explain arcl	hitecture o	of Bidin	rectional.	Associat	ive Mem	ory (BAM)). How stora	ige
		and retrieva	l perform	ed in B	BAM.		9 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$ 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
	b	Explain the				ork arch	itecture u	sing Percep	otron model	
		with suitable	e activation	on func	ction.	9 0 K L			L'AGE	
0 1	0		50	25 6 0 C		999 575	\$ C 8 2		97 A.Y	
Q. 4	a	Two fuzzy i	o fuzzy relations are given by					20 7 7 7 V	c2	
			b1	b2	b3	S	b1	0.2	0.7	
		R	a1 0.4	0.5	0		b2	0.3	0.8	
			A GO AY AR A	C. A. O.	42 97 61 33	2 45 65 65	b3	1.0	0.0	
		200	a2 07	0.8	02	N 20 1 20 1	1 20 15 W	910		
		\$ 8 S	a2 0.2	2 0.8	0.2					
		\$2.50 E	6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	l max-pi	oduct co	mposition b	petween the	
		Find T as a	max-min		12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	l max-pı	oduct co	mposition l	petween the	
	b	\$2.50 E	max-min ons.	compo	sition and	A OF TO	5000	-		
	b	Find T as a fuzzy relation	max-min ons.	compo	sition and	A OF TO	5000	-		
Q.5	b	Find T as a fuzzy relation Sketch the 5	max-min ons. 5 layer AM	compo NFIS ar y mode	osition and rehitecture el, Design	e mentio	ning the	task of eacl	n layer. Letermine th	
Q.5	Ś	Find T as a fuzzy relation Sketch the 5	max-min ons. 5 layer Al dani fuzz of domesti	compo NFIS ar y mode c wash	esition and rehitecture el, Designating mach	e mentio a fuzzy ine. Ass	ning the logic con ume that	task of each	h layer. letermine thare dirt and	e
Q.5	Ś	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on cl	max-min ons. 5 layer Andani fuzz of domestioths. Use	compo NFIS ar y mode c wash 3 desc	esition and rehitecture el, Design aing mach criptors fo	e mentio a fuzzy ine. Ass r each in	oning the logic con ume that aput varia	task of each atroller to do the inputs a bles and fire	h layer. letermine thare dirt and we descripto	e rs
Q.5	Ś	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on classification output v	max-min ons. 5 layer AM dani fuzz of domesti loths. Use ariables.	compo NFIS ar y mode c wash 3 desc Derive	esition and rehitecture el, Design aing mach criptors fo	e mentio a fuzzy ine. Ass r each in	oning the logic con ume that aput varia	task of each atroller to do the inputs a bles and fire	h layer. letermine thare dirt and we descripto	e rs
Q.5	a	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on classification of the for output values for the state of the s	max-min ons. 5 layer And dani fuzz of domesti loths. Use ariables. It applicati	compo NFIS ar y mode c wash 3 desc Derive on.	el, Designating mach	e mention a fuzzy ine. Ass reach in membe	logic cor ume that aput varia ership fun	task of each ntroller to do the inputs a bles and five ction and r	h layer. letermine thare dirt and we descripto	e rs
Q.5	Ś	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on classification output v	max-min ons. 5 layer And dani fuzz of domesti loths. Use ariables. It applicati	compo NFIS ar y mode c wash 3 desc Derive on.	el, Designating mach	e mention a fuzzy ine. Ass reach in membe	logic cor ume that aput varia ership fun	task of each ntroller to do the inputs a bles and five ction and r	h layer. letermine thare dirt and we descripto	e rs
Q.5 Q.6	a	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on classification of the for output values for the state of the s	max-min ons. 5 layer Andani fuzz of domesti loths. Use arriables. It application and mi's a	compo NFIS ar y mode c wash 3 desc Derive on.	el, Designating mach	e mention a fuzzy ine. Ass reach in membe	logic cor ume that aput varia ership fun	task of each ntroller to do the inputs a bles and five ction and r	h layer. letermine thare dirt and we descripto	e rs
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on classification output varules for the Explain Ma	max-min ons. 5 layer Andani fuzz of domesti loths. Use arriables. It applicati mdani's a	compo NFIS ar y mode c wash 3 desc Derive on, nd Zad	osition and rehitecture el, Design hing mach criptors fo necessary leh's inter	e mention a fuzzy ine. Ass reach in membe	logic cor ume that aput varia ership fun	task of each ntroller to do the inputs a bles and five ction and r	h layer. letermine thare dirt and we descripto	e rs
	a	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on old for output varules for the Explain Ma Write Short	max-min ons. 5 layer AN dani fuzz of domesti loths. Use ariables. I e applicati mdani's a	compo NFIS ar y mode c wash 3 desc Derive on. nd Zad	osition and rehitecture el, Design hing mach criptors fo necessary leh's inter	e mention a fuzzy ine. Ass reach in membe	logic cor ume that aput varia ership fun	task of each ntroller to do the inputs a bles and five ction and r	h layer. letermine thare dirt and we descripto	e rs
	a b	Find T as a fuzzy relation Sketch the 5 Using Mam wash time of grease on classification of the Explain Market Short Explain perocession of the Explain perocession of the Explain Market Short Explain perocession of the Explain perocession	max-min ons. 5 layer AN dani fuzz of domesti loths. Use variables. It applicati mdani's a Note on: ceptron co field Netv	compo NFIS ar y mode c wash 3 desc Derive on. nd Zad	osition and rehitecture el, Design hing mach criptors fo necessary leh's inter	e mention a fuzzy ine. Ass reach in membe	logic cor ume that aput varia ership fun	task of each ntroller to do the inputs a bles and five ction and r	h layer. letermine thare dirt and we descripto	e rs

57736 Page **1** of **1**

(3 hours) [80 marks]

NOTE: Question No 1 is compulsory. Attempt any three questions from remaining. Assume suitable data if necessary.

Draw neat labelled diagrams wherever needed.

Q1.

a. Design and implement ILM for Storage Management system.

10 Marks

b. Consider a disk I/O System in which I/O request arrives at the rate of 80 IOPS.

The Disk Service Time is 6 ms.

Compute the following

- 1. Utilization of IO controller
- 2. Total Response Time
- 3. Average Queue Size
- 4. Total time spent by a request in a queue

10 Marks

Q2 a. An application has 1,000 heavy users at a peak of 2 IOPS each and 2,000 typical users at a peak of 1 IOPS each, with a read/write ratio of 2: 1. It is estimated that the application also experiences an overhead of 20 percent for other workloads. Calculate the IOPS requirement for RAID 1, RAID 3, RAID 5, and RAID 6..

b. Explain FC Protocol Stack and FC SAN topologies.

10 Marks

Q3 a. Explain in detail the different components required to design Intelligent Storage System.

10 Marks

b. Explain BC planning lifecycle with an example.

10 Marks

Q4 a. Explain IP Storage standards.

10 Marks

b. Explain Multilingual retrieval systems.

10 Marks

Q5 a. Explain different components of information system and its types.

10 Marks

b. Explain Network Data Management Protocol (NDMP)

10 Marks

Q6 Write a short note on

20 Marks

- a) IP Storage
- b) NAS
- c) Stemming
- d) Symmetric and Asymmetric virtualization

58232

(3 Hours) [Total Marks: 80] **N.B.:** (1) Ouestion **No.1** is **Compulsory**. (2) Attempt any three questions from remaining questions. (3) Assume **suitable** data wherever required but **justify** the same. (4) Figures to the right indicate full marks. (5) Answer to each new question to be started on a **fresh page**. 1. Define Simulation. Explain when simulation is an appropriate tool and when it is not. (a) (10)Explain Naylor and Finger approach for validation of model. (b) (10)Calculate the output statistics for the queueing system whose inter-arrival and service 2. (a) (10)times for ten arrivals are given below: Inter-arrival time 3 1 6 A 4 5 4 1 5 4 Service time Describe the Event scheduling / Time advance algorithm. Give the system snapshots. (10)(b) **3.** (a) A car wash facility washes cars in four steps- soap, rinse, dry, and vacuum performed **(10)** by one worker. The duration of each step is exponentially distributed with a mean of 9 minutes. A car has to finish with all the four steps to enable the next car to begin the process. Find the probability that the car wash will take 30 minutes or less. Also, compute the expected length of the wash and the modal value. Using direct transformation technique, design a generator for normal and lognormal (b) (10)distribution. 4. (a) Test the following random numbers for independence by runs up and runs down test. (10)Take $\alpha = 0.05$ and the critical value $Z_{0.025} = 1.96$. {0.21,0.17,0.13,0.26,0.33,0.13,0.02,0.34,0.18,0.22} Explain Inventory system. Discuss the cost involved in inventory systems. (10)5. (a) Give the equations for steady state parameters of M/G/1 queue and derive M/M/1 from **(10)** The following data were available for the past 10 years on demand and lead time. (b) (10)Lead time 4.3 6.5 6.3 4.5 7.3 5.8 6.9 6.9 6.0 6.9 83 103 96 92 109 106 104 112 97 116 Demand Estimate correlation and covariance. 6. Write short notes on (any two): (20)Goals and Issues in simulation of manufacturing systems. (a) (b) Poisson Process and its properties. Steps in simulation study. (c) (d) Output analysis for terminating simulation.

59823 Page **1** of **1**