Sem=TV IT (CBG) 24/11/2016 5 5 6 6 Applied Maths 4 QP Code: 541304 (3 Hours) [Total Marks: 80 N.B.: (1) Question No. one is compulsory. - (2) Answer any three questions from Q.2 to Q.6 - (3) Use of stastical Tables permitted. - (4) Figures to the right indicate full marks - (5) Assume suitable data wherever applicable. - 1. (a) Find the Eigenvalues and eigenvectors of the matrix. $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ - (b) Evaluate the line integral $\int_0^{1+i} (x^2 + iy) dz$ along the path y = x 5 - (c) Find k and then E (x) for the p.d.f. $f(x) = \begin{cases} k(x-x^2), 0 \le x \le 1, k > 0 \\ 0, \text{ otherwise} \end{cases}$ (d) Calculate Karl pearson's coefficient of correlation from the following data. x 100 200 300 400 500 y 30 40 50 60 70 2. (a) Show that the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ is non-derogatory. (b) Evaluate $\int \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle |z-1|=3 (c) If x is a normal variate with mean 10 and standard deviation 4 find (i) P(|x-14|<1) (ii) $P(5 \le x \le 18)$ (ii) $P(x \le 12)$ 6 6 6 б - 3. (a) Find the relative maximum or minimum (if any) of the function $Z = x_1^2 + x_2^2 + x_3^2 4x_1 8x_2 12x_3 + 100$ - (b) If x is Binomial distributed with E (x) = 2 and V (x) = 4/3, find the probability distribution of x. - (c) If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, find A^{50} . - 4. (a) Solve the following L.P.P. by simplex method Minimize $z = 3x_1 + 2x_2$ Subject to $3x_1 + 2x_2 \le 18$ $0 \le x_1 \le 4$ $0 \le x_2 \le 6$ $x_1, x_2 \ge 0$. - (b) The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6. Test at 1% level of significance whether the boys perform better than the girls. - (c) Find Laurent's series which represents the function $f(z) = \frac{2}{(z-1)(z-2)}$ When (i) $|z| \le 1$, (ii) $1 \le |z| \le 2$ (iii) $|z| \ge 2$ - 5. (a) Evaluate $\int_{c}^{c} \frac{z^2}{(z-1)^2(z+1)} dz$ where C is |z|=2 using residue theorem 6 - (b) The regression lines of a sample are x+6y=6 and 3x+2y=10 Find - (i) Sample means x and ȳ - (ii) Correlation coefficient between x and y. Also estimate y When x = 12 - (c) A die was thrown 132 times and the following frequencies were observed 8 | [] | No.obtained | 1 | 2 | 3 | 4 | 5 | 6 | Total | | |----|-------------|----|----|----|----|----|----|-------|--| | | Frequency | 15 | 20 | 25 | 15 | 29 | 28 | 132 | | Using χ^2 -test examine the hypothesis that the die is unbiased. 8 3 - 6. (a) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 + x + 2}{x^4 + 10x^2 + 9}$ dx using contour integration. - (b) If a random variable x follows Poisson distribution such that P (x = 1) = 2 P (x = 2) Find the mean and the variance of the distribution. Also find P (x=3). - (c) Use Penalty method to solve the following L.P.P. Minimize $z = 2x_1 + 3x_2$ Subject to $x_1 + x_2 \ge 5$ $x_1 + 2x_2 \ge 6$ $x_1, x_2 \ge 0$. Sem-IV I.T (BB) C.N 1/12/2016 Q. P. Code: 549603 (3 Hours) [Total Marks: 80] | N.B.: | (1) Question No. 1 is compulsory.(2) Attempt any Three questions out of remaining questions. | 1 | |-------|---|----------| | 1. | Answer any four (a) Discuss and compare various types of Networks. (b) Explain PSTN. (c) Compare Circuit switched and Packet switched networks. | 20 | | | (d) Differentiate between TCP and UDP. | | | 2. | (e) Explain Framing in Data link layer.(a) Describe about the different Guided Transmission Medias . | 10 | | 4. | (b) What are three main function of Network layer? What is Routing. Explain Distance vector Routing. | 10 | | 3. | (a) Explain the Connection Establishment and Termination in TCP with neat diagram. | 10 | | | (b) Explain the functions of data link layer | 10 | | 4. | (a) Explain TCP Sliding Window protocol with neat diagram in detail.(b) Explain HDLC protocol with suitable diagram. | 10
10 | | 5. | (a) Explain the following with example:- (i) Repeaters (ii) Switches (iii) Hubs (iv) Routers (v) Bridges | 10 | | | (b) What are the elements of Transport Layer | 10 | | 6. | Write short notes on (Any Four) (i) GSM operation subsystem (ii) Networking using Windows and LINUX operating system (iii) Internet Control Protocol (iv) Mobile Telephone System | 20 | | | (v) BGP. | | ************* S.E. Sem-IV IT (CBG) COA 15/12/2016 QP Code :549803 | | MAX MARKS:80 | TIME:03 HRS | |----------|---|----------------| | Ν.В. | 1. Question No 1 is compulsory. | 5 % | | | 2. Solve any three questions out of remaining five questions. | 40
40 | | | 3. Assume suitable data if necessary. | A Maria | | Q. 1. | Solve any four out of five. | (4*5=20) | | | a. What are the major requirements of I/O module? | | | | b. Draw the flowchart of non-restoring division algorithm and explain the | same. | | | c. With the help of diagram, explain Von-Neumann architecture. | | | | d. Compare SRAM & DRAM, | | | | e. Note on pipeline hazards. | | | | | • | | Q. 2. | a) Explain Flynn's classification in detail. | (10) | | | b) Discuss the various characteristics of Memory. | (10) | | | | | | Q. 3. | a) Multiply (-4) and (2) using Booth's algorithm. | (10) | | • | b) Explain Instruction cycle with Interrupt execution with example. | (10) | | | | (10) | | 0.4 | a) Express (4.50) ₁₀ in IEEE 754 single & double precision standard of float | ina | | Q. 11 | point number representation. | (10) | | | b) Explain design of control unit wrt softwired and hardwired approach. | (10) | | | | | | Q. 5. | a) Divide 13 by 3 using restoring division algorithm. | (10) | | | b) Explain different addressing modes with example. | (10) | | Q. 6. | Write a note on any two. | (2*10=20) | | | a. Comparison of RISC & CISC | | | :
:2, | b. Programmed I/O | | | | c. Mapping techniques of Cache memory | | Sem-TU IT (CBGS) \$11212016 47 Q. P. Code: 549702 | | | (3 Hours) [Total M | arks: 80 | |-----------|------------|--|---------------| | N | .В. | (1) Attempt any Four questions. (2) Draw suitable diagram whenever necessary. (3) Assume suitable data, if necessary. | | | 1. | At | tempt four sub questions. | | | | | (a) State applications where Automata Theory is used. | 5 | | | | (b) What are limitations of finite automata. | 5. | | | | (c) Develop an NF A to accept strings ending with 'aba' over {a, b} | 5 | | | | (d) Explain with example equivalence between NFA & DFA. | 5 | | ^ | (-) | | | | 2. | (a) | Consider the grammar $G = \{ (S, A), (0, 1), P, S \}$, where P consists of:
(i) $S \to 0AS \mid 0$ (ii) $A \to S1A \mid SS \mid 10$
Show the leftmost and rightmost derivation for the input string '001100 | 10
'. Is | | | (h) | given G Ambiguous? | | | | (b) | Construct deterministic PDA to recognize a^nabb^n , $n > 0$ over $\{a,b\}$ | 10 | | 3. | (a) | Define Normal form and its types and Convert given grammar to CNF: | 10 | | | | (i) $S \rightarrow bA \mid aB$ (ii) $A \rightarrow bAA \mid aS \mid a$ (iii) $B \rightarrow aBB \mid bS$ | | | | (b) | | 10 | | 127 | | e de la companya l | | | 4. | (a)
(b) | 6 | 10 | | | (0) | Minimize given DFA- | 10 | | 5. | (a) | Develope ε -NFA to accept 0^n 1^n 2^n , where $n \ge 0$ over $\{0,1,2\}$ | 5 | | | (b) | Define Halting problem | 5 | | | (c) | <u> </u> | 6 | | | | (i) Binary strings containing atleast one 11 & atleast one 00 | | | | | (ii) Strings with even number of a's(iii) Strings in which third symbol from end is 'c' over { a.b.c} | | | | (d) | , | 4 | | | (4) | (i) (ab+ba)*, | 4 | | | | (ii) $1(0+1)(0+1)(0+1)(0+1)*0$ | | | 6. | (a) | Write short note on - Chomsky Hierarchy | 7 | | | (b) | Control of the state sta | 7
7 | | | (c) | Explain Pumping Lemma for Regular Language | 6 | S.E. Semil IT (CBGS) 21/2/20/6 Q.P. Code: 549904 (3 Hours) [Total Marks: 80] 10 | | Note: | 1) Question | No.1 | is | compulsory. | |--|-------|-------------|------|----|-------------| |--|-------|-------------|------|----|-------------| - 2) Solve any three questions out of remaining questions. - 3) Assume suitable data if required. | 1. (| Give | any | four | ; | |------|------|-----|------|---| |------|------|-----|------|---| - 5 (a) Explain the functions of webserver. 5 (b) Difference between static and dynamic web pages. 5 (c) What is the purpose of the XML DTD. 5 (d) Explain features of PHP framework. - 2. (a) What are the major components of a web browser? Draw a neat diagram to 10 explain them. - (b) Write the HTML code for the following table: **TEMPERATURE KOLKATTA CHENNAI MUMBAI CITIES DELHI** 50 35 43 **MAXIMUM** 21 32 MINIMUM 5 14 28 | 3. | (a)
(b)
(c) | Write a simple JavaScript example program for Fibonacci sequence. Write a program to find the current date and time using JSP. Discuss life cycle of a JSP. | 5
5
10 | |----|-------------------|---|--------------| | 4. | (a)
(b) | Compare Client-Side vs Server-Side Programming Languages. What is JQUERY? Illustrate the use of is JQUERY for form validation. | 10 | | 5, | (a)
(b) | How to connect to MySQL database using PHP. Describe the life cycle of ASP.Net | 10
10 | | 6. | Wri | te short note on (any two) | 20 | - (i) Important Classes in ADO.NET. - (ii) Types of CSS. - (iii) ASP.NET Web server control. - (iv) Cookies and sessions. Q. P. Code: 550000 ## (3 Hours) [Total Marks -80 | N.B 1. Question No. 1 is compulsory 2. Attempt any three Questions out of remaining five Questions 3. Figures to right indicate marks. 4 all questions carry equal marks. | 636 | |---|-------------------| | | | | a) What is Entropy? What are its types? b) Compare Lossy and Lossless compression. c) Write a note on convolution code. d) State Fermat's little theorem and its applications. e) Explain cyclic codes. a) What do you mean by symmetric key cryptography? Explain DES in detail. b) The generator polynomial for a (7, 4) cyclic code is given by G(D)= 1+D+D³. Compute all systematic codewords. 3 a) Explain LZW compression algorithm with example. b) State Chinese Remainder theorem. Using it solve for X. | [4]
[4]
[4] | | d) State Fermat's little theorem and its applications. e) Explain cyclic codes. | [4]
[4] | | a) What do you mean by symmetric key cryptography? Explain DES in detail. b) The generator polynomial for a (7, 4) cyclic code is given by G(D)= 1+D+D³. | [10] | | Compute all systematic codewords. | [10] | | 3 a) Explain LZW compression algorithm with example. b) State Chinese Remainder theorem. Using it solve for X. X=1 MOD 2 X=2 MOD 3 X=2 MOD 5 | [10] | | b) State Chinese Remainder theorem. Using it solve for X. | [10] | | X=1 MOD 2 | | | X=2 MOD 3
X= 2 MOD 5 | | | X=2 MOD 3 | | | 4 (4) Considerable symbols (4.4.4.4.4.2.2.2.3.) | **** | | 4. (a) Consider the symbols {1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,6,6,7}
i. Find efficient fixed length code. | [10] | | ii. Find Huffman code. | | | iii. Compare 2 codes. | (5) | | (b) Explain Modular arithmetic with example (c) Compare MD5 and SHA-1 | [5]
[5] | | (o) compare mass and shart 1 | [3] | | 5. (a) Explain Diffie- Hellman algorithm. Which attack, is it vulnerable to? | [10] | | (b) Explain the idea of Message Digest 5 (MD 5) | [5] | | (c) Explain Speech compression. | [5] | | 26 | | | 6. Write short notes on any two: | [20] | | a) RSA | | | b) REE | | | c) Channel Capacity | | | d) Data Encryption Standard (DES) | | | | | | Q [*] | | MIROI bat