(3 Hours) Q.P. Code: 25012 **Total Marks:80** Note: 1) Question No.1 is compulsory 2) Attempt any Three from the remaining Q1 A) Evaluate using Laplace transform $\int_0^t e^{-\sqrt{2}t} \frac{\sinh \sinh t}{t} dt$ 5 B) 5 Prove that $f(z) = z^n$ is analytic hence find f'(z)5 C) Find a Fourier series to represent $f(x) = \sqrt{1 - \cos x}$ in $(-\pi, \pi)$. D) 5 Find f(r), so that f(r) \bar{r} is solenoidal Q2 6 A) Find analytic function f(z)=u+iv, if $u=e^{x}(x\cos y-y\sin y)$ B) Find the Bilinear transformation which maps the points $z = \infty$, i, 0 onto the points 6 $w = 0, i, \infty$ C) 8 With period Hence deduce that $\frac{\pi^2}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$ Q3 6 A) Find inverse Laplace transform of (i) $\log(\frac{s^2+a^2}{s^2+b^2})$ (ii) $\frac{e^{-2s}}{s^2+8s+25}$ B) Find Complex form of Fourier Series of e^{ax} in (-a, a) 6 C) 8 Verify Greens Theorem for $\int_{\mathcal{C}} (x^2-y)dx + (2y^2+x)dy$ where C is the closed curve of the region bounded by y = 4 and $y = x^2$ Q4 A) 6 Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cdot sinx$ B) Use Gauss's Divergence theorem to evaluate $\iint_S \overline{N}.\overline{F}ds$ where $\overline{F}=x^2i+zj+yzk$ and 6 S is the surface of the cube bounded by x=0, x=1, y=0, y=1, z=0, z=1C) 8 Solve using Laplace transform($D^2 + 2D + 5$) $y = e^{-t}$ sint , given y(0) = 0 and y'(0) = 1Q5 A) 6 Find half range sine series for f(x)=x(π -x) in (0 , π) Hence find value of $\sum \frac{(-1)^n}{(2n-1)^3}$ Find the image of |z| < 1 under the bilinear transformation $w = \frac{i - z}{z + i}$ also find the B) 6 fixed point. Prove that $y = x^{-n} J_n(x)$ is a solution of the equation, 8 c) $x\frac{d^2y}{dx^2} + (1+2n)\frac{dy}{dx} + xy = 0$ Q.P. Code: 25012 Q6 - A) Find the directional derivative of $\emptyset = x^2y\cos z$ at $(1, 2, \frac{\pi}{2})$ in the direction of (2i + 3j + 2k) - B) Find inverse Laplace transform of $\frac{1}{(s^2+4s+13)^2}$ using convolution theorem - C) Express the function $f(x) = \begin{cases} -e^{kx} & , & x < 0 \\ e^{-kx} & , & x > 0 \end{cases}$ as Fourier integral .Hence evaluate $\int_0^\infty \frac{w.sinwx}{w^2 + k^2} \ dw$ (3 Hours) Total Marks: 80 NB: (1) Question No. 1 is compulsory. - (2) Attempt any three questions from the remaining. - (3) Figures to the right indicate full marks. - (4) Assume suitable data if required. - 1. (a) By constructing Millman's equivalent voltage source at the left of terminals a and b in the given circuit, find the current I. (5) (b) A network and its pole zero diagram are shown in the figure. Determine the values of R, L, C if Z(0)=1. - (c) Obtain Z- parameters in terms of ABCD parameters. - (5)(d) Explain various types of filters. (5) - 2. (a) Find the current through the 1 Ω resistor in the given network TURN OVER (5) (8) ## Paper / Subject Code: 51304 / Electrical Network Analysis and Synthesis (b) Find the value of load impedance Z_L so that maximum power can be transferred to it in the network of figure. Find maximum power. (6) - (c) Design a constant-k low-pass T and π section filters having cut-off frequency of 4kHz (6)and nominal impedance of 500 Ω . - 3. (a) Check whether the following polynomials are Hurwitz polynomials: (10) (i) $$F(s) = s^4+s^3+4s^2+2s+3$$ (ii) $F(s) = (s+2)^3$ - (b) Find the voltage across the 15 Ω resistor in the given network using mesh analysis. (10) **4.** (a) Test whether the following functions are positive real functions: (i) $$F(s) = \frac{s^3 + 6s^2 + 7s + 3}{s^2 + 2s + 1}$$ (ii) $$F(s) = \frac{s(s+3)(s+5)}{(s+1)(s+4)}$$ (b) The network shown in figure has attained steady state with the switch closed for $t \le 0$. At t=0, the switch is opened. Obtain i(t) for t > 0. (10) TURN OVER (10) 5. (a) Realize Cauer Form I and Cauer Form II of the following LC impedance function. (8) $$Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$$ (b) Determine Y-parameters for the circuit given in figure. **(6)** - (c) The voltage V(s) of a network is given by $V(s) = \frac{3s}{(s+2)(s^2+2s+2)}$. Plot its pole-zero diagram and hence obtain v(t). (6) - 6. (a) In the circuit given, switch is changed from position 1 to position 2 at time t=0. Find i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at time $t=0^+$. (10) (b) Find the transmission parameters of the resulting circuit when both are in cascade connection. (10) | Time | :- 03 Hours Max. Mark | xs :- 80 | |------|---|--------------------| | | Question No. 1 is compulsory & attempt any three out of the remaining five Assume suitable data if required but justify it logically wherever applicable. Figures to the right indicate full marks & every sub-question from Q. equal weightage and have 10 marks each. | | | Q.1 | ATTEMPT ANY FOUR (04):- a) Explain precision and resolution for electronic equipments. b) Draw a neat circuit diagram of LCR – Q meter & explain its operating principle. c) Explain specifications of dual trace and dual beam CRO. d) Describe operating principle of harmonic distortion analyzer with a neat block diagram. e) With a neat diagram, explain the principle of digital time measurement. | nciple. | | Q.2 | | 20 | | Q.3 | (a) Draw the block diagram of CRO and explain its operation. State specifica CRO.(b) Explain how Lissajous patterns / figures are used for measurement of an ur | 20 | | Q.4 | frequency & phase shift using a cathode ray oscilloscope (CRO). | | | Q.5 | b) Explain various features of digital storage oscilloscope.(a)Draw the neat diagram and explain the operation of dual slope type DVM(b) In a food processing unit, a highly acidic solution is stored in a storage tanl | | | | its level has to be continuously monitored round the clock. Your supervisor s that due to highly acidic nature of the solution, a non-contact transducer sh used for the level measurement. Which transducer will you use for application? Describe its operation with a neat diagram. | uggests 20 ould be | | Q.6 | (a)Draw the diagram and explain the operation of Rotameter.(b)Explain the operation of linear variable differential transformer. What is a voltage? | residual 20 | 59986 | (3 Hours) | [Total Marks: 80 | |-----------|------------------| | | | ## N.B: (1) Question No.1 is compulsory. - (2) Solves any three out of remaining question.(3) Assume suitable data if necessary. | Q.1 | So | lve any Four | | |------------|------------|--|----| | | a. | Draw characteristics of PN junction in thermal equilibrium and explain. | 05 | | | b. | For a BJT amplifier, show with the help of a voltage divider bias circuit, how to draw A.C. load line? Draw graph. | 05 | | | c. | Explain the operation of MOSFET as amplifier. | 05 | | | d. | Explain construction, working principle and characteristics of Photodiode. | 05 | | | e. | Compare HWR, FWR and Bridge rectifier. | 05 | | Q.2 | a. | Draw and explain positive and negative clamper circuit. | 10 | | | b. | Explain common base configuration of BJT as an Amplifier. | 10 | | Q.3 | a. | Draw and explain VI and CV characteristics of P-channel enhancement type MOSFET with symbol. | 10 | | | b. | Explain operation and characteristics of Schottkey diode. | 10 | | Q.4 | a. | Explain the operation of fullwave rectifier and draw the output waveform for V_{Ldc} and I_{Ldc} . | 10 | | | b. | Explain working of BJT considering all possible current density components in an NPN transistor operation in active mode. | 10 | | Q.5 | a. | Design single stage RC coupled amplifier to give a voltage gain of 80 with stability factor better than 11 and output voltage of 3 Vrms. Use NPN transistor with specifications | 15 | | | 46 | $h_{fe} - 110-800$, $h_{ie} = 4.5 \text{ k}\Omega$, $V_{CE} = 45 \text{ V}$, | | | | 2007 X | $I_{c(max)} = 100 \text{ mA}, f_L = 300 \text{Hz}, V_{CC} = 18 \text{V}.$ | | | | b . | Draw small signal model of PN junction diode. What is the main use of this model? | 05 | | Q.6 | a. | What is the small signal voltage gain of the MOSFET amplifier shown in diagram, if $V_T = 1 \text{ V}$, $K = 0.82 \text{mA/V}^2$ and $\lambda = 0.022 \text{/V}$. | 10 | b. Explain hybrid model of BJT. 10 Page 1 of 2 68371 | 120 1.8 1.5 120 1.8 1.5 121 1.5 3.5 115 1.2 4.0 280 0.9 35 260 0.9 - 500 0.9 - 500 0.9 - 500 0.9 - 500 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 | - | 2.5 | 44 W W W | 7 mA | 2000 | W non | 3 | 3 | | | 770C47 | |---|-----------------------|-------------|-----------|------------|---------------------------------|-----------------------------------|-----------------------|-------------------------------|----------|---------|-------------------------| | 120 1.8 1. 120 1.8 1. 125 1.5 3. 115 1.2 4. 280 0.9 3 260 0.9 3 260 0.9 3 200 0.9 3 2.4 2.5 3.0 3.5 2.2 2.0 1.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Derate above 25°C | 50 KΩ | 6 | 3000 µ U | 2 mA | 175°C | 300 mW | 50 | 50 | 50 | | 2N3822 | | 20 1.8 1.5 20 1.8 1.5 21.5 1.5 3.5 21.5 1.2 4.0 21.6 0.9 35 20.0 0.9 | | -7, 1000 | (typical) | Ipus | T, max. | P, max.
@25°C | Vos max. | V _{DG} max.
Volts | Vos max. | | Туре | | 22. 1.8 1.5
22. 1.8 1.5
25. 1.5 3.5
280 0.9 35
260 0.9 —
500 0.9 —
500 0.9 —
500 0.0 0.0 0.0 0 | | V Volte | | | | | | | | T | N-Channel JFET | | 20 1.8 1.5
20 1.8 1.5
22 1.5 3.5
25 1.5 3.5
260 0.9 35
200 0.9 — | 2 (90)
2
2
2 | | | | | | | | 1 | 60 | 2N 3055 | | 20 1.8 1.5 20 1.8 1.5 22 1.5 3.5 25 1.5 3.5 260 0.9 35 260 0.9 500 0.9 500 0.9 500 0.0 0.0 0.0 0 | 30 | - | 1.0 | 3.0 2.2 | mA 4.0 | IDS min. mA | - | 1. | 1 | 12 2 | ECN 055 | | 20 1.8 1.5 20 1.8 1.5 25 1.5 3.5 280 0.9 35 20 0.9 300 0.9 | 2 6 | 3.3 2.7 1.7 | 40 | +- | _ | los typ. mA | | | 1 1 | 15 E | ECN 100 | | 20 1.8 1.5 20 1.8 1.5 25 1.5 3.5 280 0.9 35 260 0.9 500 0.9 | 2 2 | 0.4 | 6.8 | 9.0 8.3 | mA 10 | los max. mA | 0.4°C/mw | 2 × 10 | 30µ U | 4-5 K O | BC 147B | | 1.8 1.5
1.5 3.5
1.2 4.0
0.9 35
0.9 — | 2.0 | 1.2 | 8.0 | 0.2 0.4 | 0.0 | -Vas volts | 0.4°C/mw | 3.2 × 10-1 | 18μ U | 2.7 K D | BC 147A
2N 525 (PNP) | | 1.8
1.5
1.5
1.2
4.0
0.9
3.5
1.2
4.0 | 1 | | ERISTICS | AL CHARACT | BFW 11-JFET MUTUAL CHARACTERIST | BFW 11- | 200 | 200 | NOE | | Transistor type | | 1.8
1.5
1.5
1.2
0.9
0.9
1.2
4.0
0.9
1.3 | | | | | | | Oia . | hre | | | | | 1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | | | 200 | 120 | 0 | 50 - | \$ | | | 0.25 | BC147B | | 1.5
1.5
1.5
1.5
1.5
1.5
4.0
9.9
3.5 | 330 | | 90 | ٠, | . 1 | 1 | 30 | 0.25 85 | 0.5 | 0.225 | 2N 525(PNP) | | 1.8 1.5
1.5 3.5
1.2 4.0
0.9 35 | 45 | | 100 | | 0 | 50 - | 45 | | | 0.25 | BC147A | | 1.8 1.5
1.5 3.5
1.2 4.0
0.9 35 | 220 | | 100 | | | 65 | 60 | | | 5.0 | ECN 100 | | 1.8 1.5
1.5 3.5
1.2 4.0 | 90 | | 8 6 | | | 1 | 40 | | | 30-0 | ECN 149 | | 1.8 1.5 | 60 | | \$ 0 | | | 00 | 50 | | | 50-0 | CN 055 | | 1.8 1.5 | 75 | 100 25 | s 60 | 200 20 | n -J | 70 90 | 60 | 1.1 100 | | 115.5 | 3055 | | | 5 | | | | 8.6. | 1 | volts a.c. volts a.c. | d.c. a.c. | Amps | Watts | | | | typ. | max. min. | מעו. | , max | volts | | (Sus) | 5 | @ 25°C | @ 25°C | ransistor type | | h _{le} V _{BE} O _{le} above max. °C/W 25°C | Signal | gain Small | current | D.C. | Vago | V _{CEN} V _{CEN} | V _{CEO} | | Icmax | Pdmax | iits-I | Paper