23/05/17

SCM-I ETRX (CBGS)

T3225 / T0493 DESIGN WITH LINEAR INTEGRATED CIRCUITS

DLIC

Q.P. Code:13161

			[Time: Three Hours]	[Marks:80]
	N.B:	 Question.No.1 Solve any thre Assume suital 	whether you have got the right question pa 1 is compulsory. ee questions from the remaining. ble data if necessary. e right indicate full marks.	per.
b) c)	Define input of Explain any five	specifications of the	or. coffset voltage, input bias current & input offs ne digital to analog converter (DAC). of the phase locked Loop (PLL).	et current for op-amp.
	AV =10		& the non-inverting amplifier using op-amp (A pression of op-amp three input averaging circu	
Q.3 a)	Design 1 st orde	er KRC Low pass filte er high pass filter for eve low pass filter (Li	er (LPF) for cut-off frequency fo=10 kHz with q r a cut-off frequency fo=2 kHz with unity gain. .PF) operation?	uality factor (Q) of 5. 10 How will you modify the 10
Q.4 a)	Describe the p Explain the op- transfer charac	eration of inverting S	flash type analog to digital convertor (ADC) w Schmitt Trigger with neat diagram, input & ou	ith a neat diagram. 10 stput waveforms with 10
Q.5 a)) Design a positi	table multivibrator u ive voltage regulator e designed circuit.	using IC 555 to generate a time delay of T=500 ir to generate $Vo=+5V$ with $Io=50$ mA by using	O ms. Assume + V_{cc} =10V. 10 ng IC LM 723. Draw neat 10
b c d) 3 stage R-C ph) Triangular wav) Precision Rect) Log-Antilog ar	otes on (any four):- lase shift oscillator u veform generator us ifier using op-amp. mplifier using op-am olled oscillator (VCO	sing op-amp.	

10

5

5

10

10

Q. P. Code: 13678

| Total Marks: 80

(3 Hours)

	(5 240

- (2) Solve any three questions from Question no 2 to Question no 6
- (3) Assume suitable data if necessary

N.B.: (1) Question no.1 is compulsory

(4) Figures on the right indicate the marks

1	Attempt	9111	four
1.	THOMP	Cilly	10ul

- a) Derive Laplace's and Poisson's equations.

 b) Starting with Maxwell's equations derive the wave equation for a wave propagating in free space.

 c) Define and explain radiation intensity, directive gain, beam width and directivity of an antenna.

 d) Define critical frequency, MUF and OWF. A high frequency radio link has to be established between two points on the earth 3000km away. If the reflection region of the ionosphere is at a height of 200km and has a critical frequency of 10MHz, calculate the MUF of the given path.

 5

 e) Explain the concept of retarded potentials.

 5
- 2. a) Derive the boundary conditions for the electric and magnetic field at a dielectric-dielectric boundary.
 b) An infinite uniform line charge with a density of 20nC/m is located along the z-axis and a surface charge density of 0.1nC/m² exists on the plane z=3. Find E at P(1,2,5)m.
- 3. a) Use the Iterative finite difference method and the band matrix method to calculate the potentials at nodes 1 and 2 in the potential system shown in figure below.

- b) Define polarization of an electromagnetic wave. Explain linear, circular and elliptical polarization. 10
- 4. a) State Poynting theorem. Derive the Poynting vector and explain the power terms involved in the derivation.

b) Find the transmission and reflection coefficients at a boundary for normal incidence. For region 1 ϵ_{r1} =9, μ_{r1} =1 and σ_{1} =0. Region 2 is free space. Assume perpendicular polarization.

- c) An electric field in a medium which is source free is given by E=1.5 cos(10⁸t-βz)a_x V/m. Obtain D, B, FI. Assume free space medium.
- 5. a) Derive an expression for the radiation resistance of an infinitesimal dipole antenna and explain its significance.
 - b) Explain the effect of imperfection of earth, curvature of earth, effect of interference zone and shadowing effect of hills and buildings on space wave propagation.

6. Write short notes on:

- a) Folded dipole antenna

 b) Skin depth

 6
- c) Wave propagation in dispersive media

T3225 / T0494 MICROCONTROLLERS AND APPLICATION

().	Ρ.	Code	•	59	1302

		(3 Hours)	[Marks: 80]	
N. B.	:	(1) Question No. 1 is compulsory.(2) Attempt any three questions from remaining quest(3) All questions carry equal marks.	ions.	
Q.I	(a) (b) (c)	pipeline of the ARM7. Explain the concept of register banks in 8051. Explain the power saving modes of the 8051.		05 05 05 05
Q.2	(d) (a)	Write an assembly language program for interfacing to the 8051. Draw the interfacing diagram.	; an alphanumeric LCD	10
Q.3	(b)	, .		10
	(b)	Explain the structure of the Input /Output ports of the diagrams.	he 8051 with neat	10
Q.4	(a)) Explain the functions of the bits of the CPSR in the between the CPSR and the SPSR.	ARM7 and differentiate	10
	(b)	o) Interface 32K of RAM (using 16K devices) and 32d devices) to the 8051. Show the memory map, clock necessary signals.	K of ROM (using 16K circuitry and other	10
Q.5	(a)	Write a program (with and without timer) to genera Pl.2. Highlight the difference in the two methods.	te a square wave on pin	10
	(b)	 "ARM-Thumb interworking improves the code der example. 	sity". Justify with a neat	10
Q.6	(a	Write a detailed note on the Interrupt structure of the related SFRs.	he 8051 and explain the	10
	(b	 Explain the following instructions: (i) MOVC A,@A+DPTR (ii) DJNZ R2,Back (iii) MLA R7,R8,R9,R3 (iv) BLE loop. 		20

09/06/147

Sem V ETRX (CB9S)

Q. P. Code: 13634

Duration:3 hours

Total marks:80

N.S.: (1) Question No.1 is compulsory.

- (2) Solve any four from remaining six questions.
- (3) Figures to the right indicate full marks
- 1. Answer the following questions:

(20)

- (a) Why and how the bandwidth of a signal is spread using spread spectrum.
- (b) Define entropy of an information source and explain its significance.
- (c) Compare and contrast digital communication with analog communication
- (d) Explain the salient features of BFSK.
- (e) Discuss on linearity and cyclic property of linear codes.
- 2(a) Develop MSK waveform (with all intermediate waveforms) for 11000111 for m=5 & n=1 on the graph paper and justify the term "minimum shift keying". (10)
- (b) A (7,4) cyclic code is generated using the polynomial $x^3 + x + 1$
 - i) Generate the systematic cyclic code for the data 1100.
 - ii) Draw the encoder & show how parity bits are generated for the data 1100. (10)
- 3(a) Compare BPSK and QPSK based on following parameters:- bandwidth requirement, noise immunity, transmission rate, efficiency & applications. (10)
- (b) The generator matrix [G] of linear (7,4) block code is as follows:

G = 1111000

1010100

0110010

1100001

- i) Find parity check matrix
- ii) Determine the syndrome for the code word 1101101. State with reasons whether this a valid code word (10)
- 4(a) A three digit message is transmitted over a noisy channel having a probability of error P(e) = (1/5) per digit.
- a. Determine Probability of occurrence of errorless message
- b. Determine Probability of message having error in any two digits

Turn Over

Q. P. Code: 13634

Z

- c. Determine Probability of message having error in all digits
- d. Plot the all possible probabilities of occurrence of error

(10)

- (b) Distinguish between direct sequence spread spectrum (DSSS) and frequency-hop spread spectrum (FHSS) with respect to principle and applications. (10)
- 5(a) Derive the probability of error of matched filter. Comment on your results. (10)
- (b) Consider an alphabet of a discrete memory less source having five different symbols with probabilities as shown below:

Symbol	SI	S2	S 3	S4	S5
Probability	0.1	0.2	0.4	0.1	0.2

Construct: (a) Huffman Code for each symbol.

- (b) Determine average codeword length of the above source.
- (c) Comment on your results.

(10)

(10)

- 6(a) What is an eye diagram, explain the parameters observed from it with an illustration.
- (b) State Nyquist's Criterion for distortion less transmission. State its significance with duohinary encoding. (10)

Sem-I ETRY

O. P. Code: 18258

Time: 3 Hrs. Total Marks: 80			200,000 FM 44 EM			
NOTE		 Question number 1 is compulsory. Attempt any three questions from the remaining five questions. Assume suitable data wherever necessary. 				
Q1	a	How will you map any point on s-plane to z-plane?	5 5			
	b c	State and prove Duality property of Fourier Transform. How will you obtain z-transform of the discrete time signal x (nT), from Laplace transform of sampled version of x (t), using $z=e^{St}$.	5			
	d	Find the transfer function of a system having its unit step response given as: s (t) = t u(t) +Sin(t) u(t)	5			
Q2	а	Verify periodicity of the following continuous time signals. If periodic find the fundamental period. (i)x(t)= 2 Cos (t/4) (ii) x(t)= $e^{-j2\pi t/7}$	4			
	b	Determine power or energy of the following continuous time signal: (i) $x(t)=3\cos(5mt)$ (ii) $x(t)=e^{j(2t+\pi/4)}$	4			
	С	Determine whether the following systems are linear/nonlinear, time variant/invariant, causal/noncausal, and stable/unstable. (i) $y(t) = e^t \cdot X(t)$ (ii) $y(t) = cost \cdot x(t)$	1.2			
Q3	а	State the sampling theorem. Discuss the effects of aliasing in frequency spectrum.	10			
	þ	Determine the impulse response sequence of the discrete time LTI system defined by				
		Y(n) - 2y(n-1) + y(n-2) = x(n) + 3x(n-3)				
Q4	a	Determine the natural response of the system described by the equation: $\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 5y(t) = \frac{dx(t)}{dt} + 4x(t); y(0) = 1; \frac{dy(t)}{dt} = -2 \text{ at } t = 0$	10			

Q. P. Code: 18258

2

Q4 b Perform convolution of the following signals, by graphical method and sketch the resultant signal.

10

Q5 a Determine the trigonometric form of Fourier series for the signal shown in figure:-

10

TURN OVER

b Determine the Fourier transform of the triangular pulse shown in figure:-

Q6 a Obtain inverse Laplace transform of $X(s) = \frac{4}{(s+1)(s+2)^2}$ for all possible ROC conditions.

10

b Determine the Z transform and sketch ROC

10

1)
$$X_1[n] = \left[\frac{1}{3}\right]^n$$
; $n \ge 0$
2) $X_2[n] = X_1[n+4]$

2)
$$X_2[n] = X_1[n+4]$$