Sem.III ETRX / EXTC (COSCOS) AM-3 (3 Hours)

).P. Code : 13608

[Total marks: 80

Note :-

- 1) Question number 1 is compulsory.
- 2) Attempt any three questions from the remaining five questions.
- 3) Figures to the right indicate full marks.
- Q 1.A) Show that $u = y^3 3x^2y$ is a harmonic function. Also find its harmonic conjugate. (5)

B) Find half range Fourier sine series for
$$f(x) = x^3$$
, $-\pi < x < \pi$. (5)

C) If
$$\bar{F} = xye^{2z}i + xy^2coszj + x^2cosxyk$$
 find div \bar{F} and curl \bar{F} (5)

D) Evaluate
$$\int_0^\infty e^{-2t} \sin^3 t \ dt$$
. (5)

Q.2) A) Prove that
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
 (6)

- B) Find an analytic function f(z) whose imaginary part is $e^{-x}(y\sin y + x\cos y)$ (6)
- C) Obtain Fourier series for $f(x) = 1 + \frac{2x}{\pi} \pi \le x \le 0$ $= 1 \frac{2x}{\pi} \quad 0 \le x \le \pi$

Hence deduce that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 (8)

- Q.3) A) Show that $\bar{F} = (2xyz^2)i + (x^2z^2 + zcosyz)j + (2x^2yz + ycosyz)k$, is a conservative field. Find its scalar potential φ such that $\bar{F} = \nabla \varphi$ and hence, find the work done by \bar{F} in displacing a particle from A(0,0,1) to B(1, π /4,2) along straight line AB
 - B) Show that the set of functions $f_1(x) = 1$, $f_2(x) = x$ are orthogonal over (-1, 1). Determine the constants a and b such that the function $f_3(x) = -1 + ax + bx^2$ is orthogonal to both f_1 and f_2 on that interval (6) TURN OVER

1

C) Find (i)
$$L^{-1}\left\{log\left[\frac{s^2+a^2}{\sqrt{s+b}}\right]\right\}$$
(ii) $L\left\{\left(e^{-t}cost.H(t-\pi)\right\}\right\}$
(8)

Q.4) A) Prove that
$$\int J_5(x) dx = -J_4(x) - \frac{4}{x}J_3(x) - \frac{8}{x^2}J_2(x)$$
 (6)

B) Find inverse Laplace of
$$\frac{s}{(s^2-a^2)^2}$$
 using Convolution theorem. (6)

C) Expand $f(x) = \frac{3x^2 - 6x\pi + 2\pi^2}{12}$ in the interval $0 \le x \le 2\pi$ as a Fourier series.

Hence, deduce that
$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 (8)

- Q.5) A) Using Gauss Divergence theorem, prove that $\iint_S (y^2z^2i + z^2x^2j + z^2y^2k)$. $\overline{N}ds = \frac{\pi}{12}$ where S is the part of the sphere $x^2 + y^2 + z^2 = 1$ and above the xy-plane. (6)
 - B) Prove that $J_3(x) + 3J_0(x) + 4J_0'''(x) = 0$ (6)

C) Solve
$$(D^3-2D^2+5D)y = 0$$
, with $y(0)=0$, $y'(0)=0$ and $y''(0)=1$, (8)

- Q.6) A) Evaluate by Green's theorem for $\int_{c} \left(\frac{1}{y} dx + \frac{1}{x} dy\right)$ where C is the the boundary of the region define by x = 1, x = 4, y = 1 and $y = \sqrt{x}$ (6)
 - B) Find the bilinear transformation which maps the points z = 1, i, -1 onto points w = i, 0 i (6)
 - C) Find Fourier cosine integral representation for $f(x) = e^{-ax}$, x > 0Hence, show that $\int_0^\infty \frac{\cos \omega s}{1+\omega^2} d\omega = \frac{\pi}{2} e^{-x}$, $x \ge 0$ (8)

---X---X---X

Q.P. Code:10591

	[Time: 3 Hours]	rks:8UĮ
	Please check whether you have got the right question paper. N.B: 1. Question -1 is compulsory, 2. Solve any THREE from remaining questions. 3. Assume suitable if it is required.	
1	a) How Zener diode is different than normal diode?b) Explain nonlinear effects in MOSFET?c) Draw and explain Ebers, moll model of BJTd) Compare BJT and IGBT	(5) (5) (5) (5)
2	 a) Draw the graph of built is potential Vbi for a symmetrical si diode (Na = Nd) at T = 300°k, over the range 10¹⁴ ≤ Na ≤ 10¹⁹ cm⁻³. b) Explain working of BJT considering all possible modes of operation. 	(10) (10)
3	 a) Derive the equation of threshold Voltage V Th of n channel Enhancement MOSFET b) Neatly sketch all FET characteristics. Explain how various parameters can be determined from the characteristics. State drain current equation of FET. 	(10) (10)
4	 a) Sketch and explain Tunnel diode characteristics. Explain applications of this diode b) Explain construction, working and characteristics of D – MOSFET. 	(10) (10)
5	a) Explain how optical device are classified? Explain any one photodetector in detail.b) Draw and explain construction and characteristics of UJT. State its applications.	(10) (10)
6	Write notes on any TWO of the following. a) HBT b) Solar Cell. c) SCR d) Diac and Triac	(20)

Q.P. Code:10402

			(Tim	ie: 3 Mours			i Marks:80
	N.B:	Picase check will. Question No.1 in 2. Solve any three 3. Draw neat legic	s Compulse from the re	ry maining five q	aestions.		
K.	b. Explain ros c. Draw truth	TTL NAND gate g counter table and logic diagn characteristics para			g half Subtract	ors and gates	0.8 05 05 05
Q.2		e clocked synchronounsition table and stab					· · · · · · · · · · · · · · · · · · ·
	CIK CIK	in to the desired of	D 7683 112	Ti Gi Ville		W	
Ç3	a. Design a tr	ically sequence detective in the with optimum (16,10,15) (7,9,12,14)	or to detect	0100	ing O Nip-Flop	s and logic gates	a de la companya de l
Q.4	F(A,B,C,D)=	tollowing function υ Σm(1.2,5.7,8,10,13,1 74194 working in d	4)) gates		7 (%) 2 (%) 2 (%) 2 (%)
Q.5	a: Use K-map	to reduce following			ant it by NOR	gatos.	10
	b. Eliminate i	14-mM(0,1,4,7,8 redundent states and Present state A B C D E F G		luced state dis	(Cutput Y 1 0 0 1 1 0		10

Q.P. Code:1040Z

- Q.6 Write short notes on any fixee
 - J. Master slave JK. Flip Flop
 - 2. Write a VHDL code for full adder
 - 3. Stuck at '0' and 'i' faults
 - 4. CPLD and FPGA architecture block diagram

20

Q.P. Code :10761

[Time: 3 Hours]

[Marks:80]

Please check whether you have got the right question paper.

N.B:

- 1. Question no.1 is compulsory.
- 2. From Q2 to Q6 solve any three.

Q1. Attempt any four.	20
a. Draw Maxwell Bridge and list applications.	
b. List different thermocouples and their typical range.	
c. Short note on Q meter.	
d. Define transfer. List different types of transducers.	
e. Draw a neat and labeled diagram for LVDT.	
Q2. a. Explain FET electronic voltmeter with neat diagram.	20
b. Explain single channel and multichannel data acquisition system with neat labeled separate block diagrams.	
Q3. a. Explain following approaches of temperature measurements: RTD, Thermisters, and Thermocouples.	20
b. Draw block diagram of CRO. Also draw block diagram of DSO. No explanation needed. List applications of DSO.	
Q4. a. Explain in detail Dead Weight Testing with neat labeled diagram.	2.0
b. Draw and explain Schering bridge.	
Q5. a. Explain frequency and phase measurement with oscilloscope.	20
b. Explain in detail types of errors in measurement system.	
Q6 Short note on	20
a. Strain Gauges	
b. Electromagnetic flow meter	
c. Rota meter	
d. Lissajous Figures	

T1523 / T1493 S.E.(ELECTRONICS ENGG)(SEM III)(CBSGS)CIRCUIT THEORY

Q. P. Code: 13675

REVISED COURSE (03 Hours)

Total Marks: 80

N.B.: 1) Question number one is compulsory.

2) Attempt any three questions out of remaining five questions.

3) Figures to the right indicate full marks.

4) Assume suitable data if required.

5) Use Smith chart for transmission line problem

1. a) Find poles and zeros of the impedance of the following network.

b) What are standing waves? Define reflection coefficient and VSWR of a transmission line.

c) Explain various types of filters in circuit theory.

5) 5)

d) Explain the graphical representation of series resonance circuit.

5)

2. a) For the network shown determine the current i (t) when the switch s is closed at t=0 with zero initial conditions using Laplace transform.

b) The impedance parameters of two port network are $Z_{11}=6\Omega$, $Z_{22}=4\Omega$, $Z_{12}=Z_{21}=3\Omega$. 5) Compute the Y parameters.

c) Find the voltage at node 2 for the figure shown.

Q. P. Code: 13675

2

- 3. a) Design a short circuit shunt stub match for Z_L =150 -200j (Ω) for a line of Z_0 =100 Ω and 10) Frequency at f = 20 MHz using Smith chart.

c) Determine $\frac{V_1}{I_1}$ and $\frac{V_2}{I_1}$ for the given network.

5)

4. a) Test whether following functions are a positive real function.

10)

i)
$$F1(s) = \frac{s^2 + 1}{s^3 + 4s}$$

ii)
$$F2(s) = \frac{2s^2 + 2s^2 + 3s + 2}{s^2 + 1}$$

b) Use continued fraction expansion method to check whether the given polynomials is Hurwitz or not.

5)

$$P(s) = s^7 + 2s^6 + 2s^5 + s^4 + 4s^3 + 8s^2 + 8s + 4$$

c) Realize Caur first form of the following L C impedance function.

5)

$$Z(s) = \frac{10s4 + 12s^2 + 2}{2s3 + 2s}$$

Q. P. Code: 13675

3

5. a) In the network shown, the switch is changed from position 1 to position 2 at t=0.

Steady state condition having reached before switching. Find the value of i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at t=0.

- b) Determine h parameters of the network given.

 5)
- c) The constants of a transmission line are $R = 6 \Omega$ /Km, L=2.2 mH /km, G=0.25 x 10⁻⁶ mho /km, $C = 0.005 \mu$ F/km. Determine the characteristic impedance and propagation constant of the Line at a frequency of 1 k Hz.
- 6. a) Design an m- derived T- section high pass filter with a cut off frequency of 2KHz.
 5) Design impedance of 700Ω and m =0.6.
 - b) What are scattering parameters. State their properties.
 - c) Explain characteristics and applications of Smith chart.
 - d) List the types of damping in a series R-L-C circuit and mention the condition for each damping. 5)

