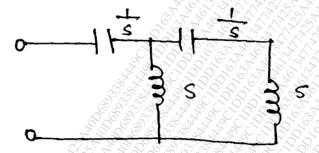
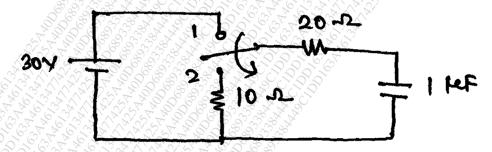
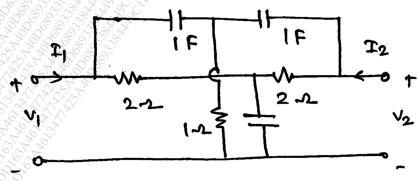
Paper / Subject Code: 49704 / CIRCUIT THEORY


Q. P. Code: 50072

(2½ Hours) (Total Marks: 60)

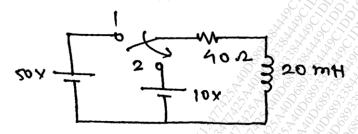

Please check whether you have the right question paper.

N.B.: 1) **Questions No.1** is **compulsory**.


- 2) Solve **any three** questions out of remaining **five** questions.
- 3) **Figures** to the **right** indicate **full marks**.
- 1. a) State and explain properties of positive real function. (05)
 - b) Compare series and parallel resonance circuit. (05)
 - c) Determine the driving point impedance of the network shown. (05)

- d) Determine whether $p(s) = s^4 + s^3 + 2s^2 + 3s + 2is$ Hurwitz. (05)
- 2. a) In the network shown the switch is changed from position 1 to 2 at t = 0. Find the (10) values of i, $\frac{di}{dE}$ and i, $\frac{d^2i}{dt^2}$ at $t = 0^+$.

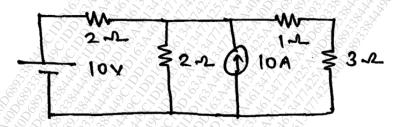
- b) Find the Foster forms of the following impedance function: $z(s) = \frac{(s+1)(s+4)}{(s+5)(s+3)}.$ (10)
- 3. a) Find Y parameters for the network shown: (10)

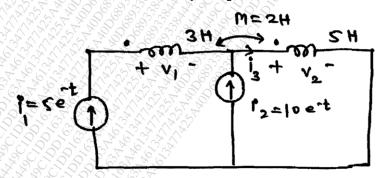

TURN OVER

Paper / Subject Code: 49704 / CIRCUIT THEORY

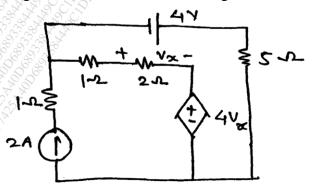
2

Q. P. Code: 50072

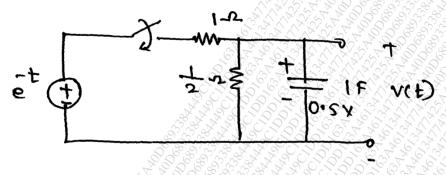

b) The network given below is under steady state with switch at position 1. At t = 0 the (10) switch is moved to positions 2. Find i(t).


4. a) Test whether the following function is positive real: (05)

$$f(s) = \frac{s^2 + 6s + 5}{s^2 + 9s + 14}.$$


- b) Derive the condition for reciprocity and symmetry for the network in terms of z (10) parameters.
- c) Derive the relation for characteristic impedance of a transmission line. (05)
- 5. a) Find the current through 3 Ω resistor using Theremins theorem: (05)

b) In the network shown find the voltages $v_1 \& v_2$: (05)


c) Find the current through 5Ω resistor for the network given below: (10)

3

Q. P. Code: 50072

- 6. a) The characteristic impedance of a high frequency line is 100Ω . It is terminated in an impedance of $100 + j100\Omega$. Using a smith chart find the impedance at $\frac{1}{8}$ wavelength away from the load end.
 - b) In the network shown the switch is closed at t=0 connecting a source e^{-t} to the network at t=0. $V_c(0)=0.5$ V. Determine V(t).

Paper / Subject Code: 49703 / DIGITAL CIRCUITS AND DESIGN

		[Time: 3Hours]					[Marks:80
			N.B:	2.	Out of rem	o. 1 is compulsory. aining questions, attempt any THREE questions. table data, wherever necessary.	
Q1		a)b)c)	Differer Write tr Explain	ct 2-in ntiate b uth tab any fi	between Cor ble and draw ve features	and EX-NOR Gates using only NAND gates. mbinational and Sequential Circuits. logic diagram of Half Adder. of VHDL. sing IC 7490.	20
Q2		Imple	ment the	functio	on using onl	, 15) + d (1,6) using K-map. y NOR gates. ur bit magnitude comparator IC 7485.	10
							10
Q3						ter using JK flip-flop. Draw output Waveform.	10
	b		nate the re			d draw the reduced state diagram.	10
		PS	77.0	NS	O/P	-	
		_	X=0	X=1	Y		
		A	В	C	1 00		
		B C	D	C	0,75	4	
		D	F	Е	0	1777	
		E	E B	B	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9	
		F	С	E	0		
		G	F	G	0	2	
Q4		Using Design	F ₂ (A	A, B, C I, 8:1 N seque		,2,5,7)	10
Q5	9	Liston	ut differe	nt type	e of PLD's	Implement the given functions using PLA.	10
QJ	ď	ひかく ムコ・ムティ	$(B,C) = \sum_{i=1}^{n}$			F2(A,B,C) = $\sum m (1,2,4,7)$	10
	b					TL NAND gate and explain in brief.	10
Q6		a) b) c) d)	CPLD A Stuck at Johnson	Archite t 0 &1 Counssignm		Y	20

		(3 Hours) (Total Mark	00 6 1 00			
N.B	, , -	uestion No.1 is compulsory and solves any three questions from remaining questions guitable data if page 2000.	tions.			
		ssume suitable data if necessary . raw neat and clean figures .				
	(0) 2.					
1.	Answ	ver Any Two:				
	a)	Compare effect of temperature in BJT, JFET, Diode and MOSFET.	10			
	b)	With neat diagram, explain the operation of UJT relaxation oscillator.	10			
	c)	Explain construction, working and characteristics of photodiode.	10			
2.	a)	Explain concept, working and characteristics of Tunnel diode.	10			
	b)	Why FET is called as square law device? Differentiate between BJT and FET.	10			
3.	a)	Determine ideal reverse saturation current density in a silicon PN junction at	10			
		$T = 300^{\circ}$ K. Consider the following parameters in a silicon PN junction : $Na =$				
		Nd = 10^{16} cm- 3 ·ni = $1.5*10^{10}$,E r = 11.7 ,Dp = 10 cm 2 /S, Dn = 25 cm 2 /S,Tpo				
		=Tno=5*10 ⁻⁷ .				
	b)	Discuss Ebers moll model for BJT in detail.	10			
4	a)	Describe construction, working and characteristics of:	10			
		i) DIAC				
		îi) IGBT				
	b)	Draw and explain VI characteristics of Triac	05			
	c)	Sketch and explain characteristics of PN junction solar cell	05			
5	a)	Justify space charge width increases with reverse bias voltage in a pn junction	10			
3		diode.				
KO S	b)	Explain the need of heterojunction? Explain the terms straddling, staggered	10			
		and broken gap in relation to heterojunction				
6	Write	short notes (Any Three):	20			
	(a) Optocoupler				
N. C	(b) SCR					
	(0) Comparison of photodiode and avalanche photodiode				
	(C) Comparison of DMOSFET and EMOSFET				
20 OF						
3 83 °C	20 6 A	7. F.				

Page 1 of 1

76056

Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III

(3 Hours)	[Total Marks: 80]
· · · · · · · · · · · · · · · · · · ·	\$ 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note:-

- 1) Question number 1 is compulsory.
- 2) Attempt any **three** questions from the remaining **five** questions
- 3) **Figures** to the **right** indicate **full** marks.
- Q.1 a) Find the Laplace transform of cost cos2t cos3t

05

- b) Show that the set of functions cosnx, n=1,2,3,... is orthogonal over $(0,2\pi)$ 05
- c) Prove that $f(z) = (x^3 3xy^2 + 2xy) + i(3x^2y x^2 + y^2 y^3)$ is analytic and find $f^I(z)$ 05 in terms of z.
- d) Find the directional derivative of $\varphi = x^2 + y^2 + z^2$ in the direction of the line $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$ 05 at (1, 2, 3)
- Q.2 a) Find the fourier series for $f(x) = x^2$ in $(0, 2\pi)$

06

b) Show that the vector $\overline{F} = (x^2 + xy^2) i + (y^2 + x^2y) j$ is irrotational and find its scalar potential

06

- c) Prove that the transformation $w = \frac{1}{z+i}$ transforms real axis of z-plane into a circle of w-plane
- Q.3 a) Using convolution theorem, find inverse Laplace transform of $\frac{s^2}{(s^2+2^2)^2}$.
 - b) Prove that $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 x^2}{x^2} \sin x \frac{3}{x} \cos x \right)$ 06
 - c) Find half range cosine series for $f(x) = x(\pi x)$, $0 < x < \pi$. Hence show that $\sum_{1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$ 08

Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III

- Q.4 a) Evaluate by Green's theorem $\int_c (e^{x^2} xy) dx (y^2 ax) dy$ where c is 06 the circle $x^2 + y^2 = a^2$.

b) Prove that $2 J_0''(x) = J_2(X) - J_0(x)$.

06

c) i) Evaluate $\int_0^\infty \frac{e^{-t} - e^{-3t}}{t} dt$

08

- ii) Find Laplace transform of $t\sqrt{1+sint}$
- Q.5 a) Find the orthogonal trajectory of the family of curves $x^3y xy^3 = c$. 06
 - b) Prove that $\int x \cdot J_{2/3} (x^{3/2}) dx = -\frac{2}{3} x^{-1/2} J_{-1/3} (x^{3/2})$. 06
 - c) Obtain complex form of Fourier Series for $f(x) = e^{2x}$ in (0, 2). 08
- Q.6 a) Use stoke's Theorem to evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ where $\overline{F} = yz i + zx j + xy k$ 06 and C is the boundary of the circle $x^2 + y^2 + z^2 = 1$ and z = 0.
 - b) Find the fourier integral representation for 06

$$f(x) = e^{ax}, x \le 0, a > 0$$

= $e^{-ax}, x \ge 0, a > 0$

Hence show that $\int_0^\infty \frac{\cos wx}{w^2 + a^2} dx = \frac{\pi}{2a} e^{-ax}$, x > 0, a > 0

c) Solve using Laplace transform $(D^2 + 2D + 5)y = e^{-t}sint$, where y(0) = 0, $y^{||}(0) = 1$. 08 *******

76842

		Duration :3 Hours Marks:80						
N.B.:	(1) (Duagtion No. 1 is compulsory						
N.D.:	(1) Question No. 1 is compulsory.(2) Solve any three questions from remaining five questions.							
	Draw neat diagrams and assume suitable data wherever necessary. Justify your	\$ \$ £ \C						
		assumptions.						
Question	no 1	1.	7.46					
		lve any four	300 TO					
	a)	Define the following terms:-	9,42,00					
		Accuracy, Precision, Sensitivity, Linearity and Resolution	(5M)					
	b)	Draw Venturi meter for flow measurement.	(5M)					
	c)	Draw and explain the working of practical Q-meter circuit.	(5M)					
	d)	Write the specification of CRO.	(5M)					
	e)	Compare digital and analog measuring meters.	(5M)					
Question	no 2	2.Attempt the following						
	a)	Draw and explain the block diagram of CRO .List advantage and disadvantages of it.	(10M)					
	b)	Draw and explain Kelvin double bridge for measurement of unknown resistance	(10M)					
Question	no 3	3. Attempt the following						
	a)	Draw and explain Maxwell bridge for inductance measurement with expresssions	(10M)					
		involved in it.List drawbacks of it.						
	b)	What are the types of errors in measurement systems? Explain all in details.	(10M)					
Question	no 4	4. Attempt the following						
	a)	Draw and explain ultrasonic type level transducer.						
		List advantages and disadvantages of it.	(10M)					
	b)	Draw and explain Dead weight tester	(10M)					
Question	no:	5. Attempt the following						
NO. C	a)	Draw and explain the construction and working of electronics voltmeter using transistors.	(10M)					
		Draw & explain block diagram of data acquisition system.	(10M)					
Question	no (6. Write short note on the following	(20M)					
	a)	Data logger						
	b)	Magnetic flow meter.						
	(c)	DSO						
447460	d)	Static and dynamic characteristics of instruments						
0000	665	Z						
	4,6 <u>7</u>							

77639 Page 1 of 1