23/12/2021_Engineering Mathematics III _Electronics&Computer Engineering_sem III_R19

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

	mik provided
*	Required
1.	Email *
2.	Enter your Name *
3.	Enter Exam Seat number(as per Hall Ticket) *
4.	Class Roll No *
5.	GCR No * Mark only one oval.
	GCR 1 GCR 2

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	
	Laplace Transform of $\{e^{2t} + 4t^3 - 2sin3t + 3cos3t\}$ is
Option A:	$\frac{1}{s-2} + \frac{6}{s^4} + \frac{3s-2}{s^2+9}$
Option B:	$\frac{1}{s-2} + \frac{6}{s^3} + \frac{-2+3s}{s^2+9}$
Option C:	$\frac{1}{s-2} + \frac{24}{s^4} + \frac{s-2}{s^2+9}$
Option D:	$\frac{1}{s-2} + \frac{24}{s^4} + \frac{3(s-2)}{s^2+9}$
2.	If $L\{f(t)\} = \frac{s-3}{(s^2-6s+25)^2}$, then $L\{f(2t)\}$ is $\frac{4(s-6)}{(s^2-12s+100)^2}$ $\frac{s-6}{(s-6)}$
Option A:	$\frac{4(s-6)}{(s^2-12s+100)^2}$
Option B:	$\frac{s-6}{(s^2-6s+100)^2}$
Option C:	$\frac{\left(s^2 - 6s + 100\right)^2}{2(s - 3)}$ $\frac{2(s - 3)}{\left(s^2 - 12s + 100\right)^2}$
Option D:	$\frac{(s^2 - 12s + 100)^2}{4(s - 3)}$ $\frac{(s^2 - 12s + 100)^2}{(s^2 - 12s + 100)^2}$
3.	Inverse Laplace Transform of $\frac{s}{4s^2-25}$ is
Option A:	1 -cosh-t
Option B:	$cosh^{\frac{5}{2}}t$
Option C:	$\frac{1}{4}sinh\frac{5}{2}t$
Option D:	$sinh\frac{5}{2}t$
4.	Inverse Laplace Transform of $log(\frac{s^2+1}{s^2})$ is
Option A:	$\frac{2}{t}(1+cost)$
Option B:	$\frac{2}{t}(1-sint)$
Option C:	$\frac{2}{t}(1-cost)$
Option D:	$\frac{2}{t}(1+sint)$

	T
5.	If $f(z) = x^2 - y^2 + i2xy$ find $f^{1}(z)$
Option A:	Z
Option B:	2z
Option C:	$2z^2$
Option D:	z^2
Option b.	
6.	The value of m so that $2x - x^2 + my^2$ may be harmonic
11.50.7	The value of m so that $2x - x + my$ may be national.
Option A: Option B:	1
_ •	2
Option C: Option D:	3
Орстоп Б.	
7.	[1 0]
· ·	The matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ is given. Findthe eigenvalues of $4A^{-1} + 3A + 2I$
Option A:	9, 15
Option B:	6, 15
Option C:	9, 12
Option D:	7, 15
•	
8.	The matrix $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & p \end{bmatrix}$ has one eigenvalue equal to 3.
	The sum of the other two eigen values is
Option A:	p
Option B:	p-1
Option C:	p-2
Option D:	p-3
9.	The Fourier series to represent x^2 for $0 \le x \le 2\pi$ is given by
	$x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cosnx + \sum_{n=1}^{\infty} b_n sinnx$. The value of a_0 is
O A	2 · \(\Delta n = 1 \text{ and } \text{ \(\Delta n = 1 \text{ by states}}\). The value of \(\Delta \text{ by states}\)
Option A:	$\frac{4\pi^2}{3}$
Option B:	$\frac{1}{2\pi^3}$
Option B.	$\frac{2\pi^3}{3}$ π^2
Option C:	π^2
	3
Option D:	$8\pi^2$
	3
10.	The value of λ so that the vector $\vec{u} = (x + 3y)\hat{i} + (y - 2z)\hat{j} + (x + \lambda z)\hat{k}$
	is solenoidal vector is
Option A:	-2
Option B:	3
Option C:	1
Option D:	2

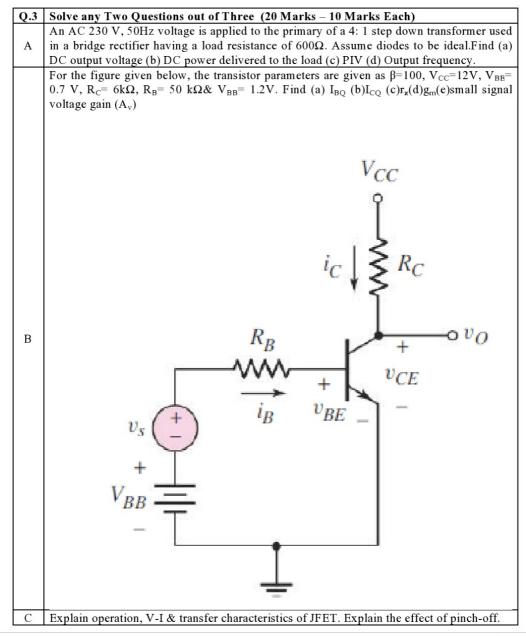
Q2. (20 Marks)	Solve any Four out of Six 5 marks each
(20 Marks)	Find the Laplace transform of $e^{-3t} cosh5t sin4t$
В	Using the convolution theorem, Find $L^{-1} \left(\frac{1}{(s^2 + 9)^2} \right)$.
С	Find the Fourier series of $f(x) = \frac{\pi^2}{12} - \frac{x^2}{4}$ in the interval $(-\pi,\pi)$
D	Find the constants a,b,c,dand e if the function $f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy)$ is analytic.
Е	$f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy)$ is analytic. Show that the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ is diagonalisable
F	Show that $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ is a conservative force. Find the work done by the force \vec{F} on the particle from $(1,1,0)$ to $(2,0,1)$.

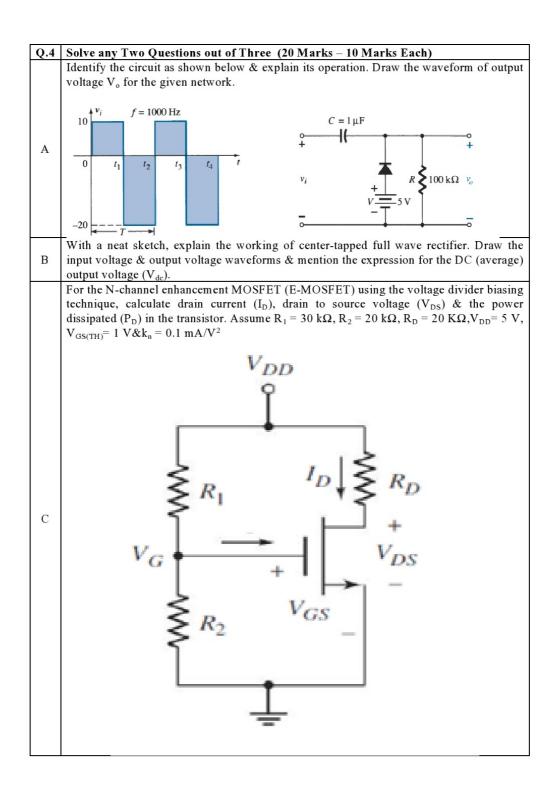
Q3.	Solve any Four out of Six	5 marks each
(20 Marks)		
Α	Find the Laplace transform of $e^{-4t}\int_0^t u \sin 3u \ du$	
В	Obtain the inverse Laplace transform of s^3 $(s-3)$	
С	Find the half - range cosine series of the function $f(x) = -\frac{x}{l} + 1$, $0 \le x \le l$,	
D	Construct an analytic function whose imaginary part	$ise^{2x}(xcos2y - ysin2y).$
Е	Verify Cayley - Hamilton theorem for the matrix A=	$\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$
F	Find the directional derivative of the scalar function $\phi(x,y,z) = xy + zy + zx$ at the point $(1,2,3)$ in the direction of $3\hat{i} + 4\hat{j} + 5\hat{k}$.	

Q4.	Solve any Four out of Six 5 marks each
(20 Marks)	
A	Find the Laplace transform of f(t) where $f(t) = \begin{cases} \frac{t}{k}, & 0 < t < k \\ 1, & t > k \end{cases}$
В	Find $L^{-1}\left(\frac{s^2}{(s^2+5)(s^2+4)}\right)$
С	Obtain the Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$
D	If $u = x^2 - y^2$, $v = \frac{-y}{x^2 + y^2}$ Show that both u and v are harmonic functions.
Е	If $A = \begin{bmatrix} \frac{n}{2} & \frac{\pi}{3n} \\ 0 & \frac{3\pi}{2} \end{bmatrix}$, find sinA
F	Using Green's theorem evaluate $\int_C (x^2 + xy)dx + (x^2 + y^2)dy$ where C is the square bounded by the lines $x = 0$, $x = 1$, $y = 0$ and $y = 1$.

6.	Upload the file *
	Files submitted:
7.	Have you uploaded the correct file? *
	Mark only one oval.
	yes
	◯ No

Electronic Devices (ED)-_Electronics and Computer Science (ECS) _Sem III R19


The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)


	mik provided
*	Required
1.	Email *
2.	Enter your Name *
3.	Enter Exam Seat number(as per Hall Ticket) *
4.	Class Roll Number *
5.	GCR No * Mark only one oval.
	GCR 1 GCR 2

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (20 Marks – 02 Marks Each)
1.	How many P-N junction(s) does anordinary diode have?
Option A:	0
Option B:	1
Option C:	2
Option D:	3
option B.	
2.	During reverse bias, a small current flows across the P-N junction diode known as
Option A:	Forward Current
Option B:	Reverse Current
Option C:	Reverse Saturation Leakage Current
Option D:	Active Current
•	
3.	The breakdown voltage of Zener diode is constant over a wide range of reverse bias currents. This makes Zener diode useful in a
Option A:	Filter
Option B:	Battery
Option C:	Voltage Regulator
Option D:	Amplifier
4.	Calculate the collector current for a transistor in the forward active mode, given
	that β = 150 and I_B = 15 μ A
Option A:	0.5 mA
Option B:	1 mA
Option C:	5 mA
Option D:	2.25 mA
5.	If Base-Emitter junction is forward biased and Base-Collector junction is reverse
	biased, the transistor is working in
Option A:	Forward Active Mode
Option B:	Reverse Active Mode
Option C:	Cut off
Option D:	Saturation
	Identify the transistor biasing circuit shown in the figure given below
	Vcc
	\downarrow $I_{CO} \downarrow$ R_C
6.	\$ \text{*\frac{1}{2}} \text{*\frac{1}{2}} \text{*\frac{1}{2}}
	V _{CEQ}
	$v_s \stackrel{\leftarrow}{\longrightarrow} \qquad \qquad$
	Ţ
Option A:	Forward Biasing
Option B:	Reverse Biasing
Option C:	Single base resistor biasing
Option D:	Voltage divider Biasing

7.	Which of the following statements is true about FET?
Option A:	It has high output impedance
Option B:	It has high input impedance
Option C:	It has low input impedance
Option D:	It does not offer any impedance
8.	The Shockley's equation for JFET makes it to be also called as:-
Option A:	Square law device
Option B:	Cubic law device
Option C:	Quadratic law device
Option D:	Exponential law device
9.	What is the number of capacitors and inductors used in a CLC filter?
Option A:	1, 2 respectively
Option B:	2, 1 respectively
Option C:	1, 1 respectively
Option D:	2, 2 respectively
10.	Spintronic Devices are generally made ofmaterials.
Option A:	Ferromagnetic
Option B:	Paramagnetic
Option C:	Diamagnetic
Option D:	Nonmagnetic

Q.2	Solve any Four out of Six(20 Marks – 05 Marks Each)
A	Explain the effect of temperature on the V-I characteristics of P-N junction diode.
В	Explain the difference between Zener breakdown and Avalanche breakdown.
С	What do you mean by Early Effect in bipolar junction transistor (BJT)?
D	Explain the Common Source circuit configuration of MOSFET.
Е	Explain the working of C filter. Draw appropriate diagrams.
F	Write a short note on spintronic devices.

4 | Page

6. Upload the file *

7.	Have you uploaded the correct file? *
	Mark only one oval.
	yes
	○ No

29/12/2021_Digital Electronics_Electronics and Computer Science (ECS) _Sem III_R19

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

	link provided		
*	Required		
1.	Email *		
0			
2.	Enter your Name *		
3.	Enter Exam Seat number(as per Hall Ticke)*	
4.	GCR Number *		
	Mark only one oval.		
	GCR1		
	GCR 2		
5.	Class Roll Number *		

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which of the is the correct sequence of steps of Digital design with FPGA?
Option A: Option B:	Design Entry, Mapping, Place and route, Simulation, Bit stream generation, Synthesize Bit stream generation, Design Entry, Simulation, Synthesize, Mapping, Place and route
Option C:	Design Entry, Simulation, Synthesize, Mapping, Place and route, Bit stream generation
Option D:	Simulation, Synthesize, Design Entry, Place and route, Mapping, Bit stream generation
	7 7 7 7 11 6
2.	In 2's complement signed number representation, 110001 represents which of the following decimal number?
Option A:	-49
Option B:	-14
Option C:	+49
Option D:	-15
3.	The hexadecimal number $(2D.31)_{16}$ is equivalent to which of the following the octal number?
Option A:	55.142
Option B:	45. 174
Option C:	16.655
Option D:	61.424
4.	The canonical sum of product form of the function y(A, B, C) = A' C'+ BC is
Option A:	A'B' C'+ A'B C + A B C
Option B:	A'B C'+ A'B' C'+ A'B C + ABC
Option C:	AB' C + A'B C+ A'B'C' + A'B'C
Option D:	A'B C' + AB' C + A B' C'
5.	
	The following circuit represents y2 b2 b1 b1 y0 y0
Option A:	Odd parity checker
Option B:	BCD to excess 3 converter
Option C:	Demultiplexer
Option D:	Binary to gray code converter
	11 D a g a

6.	The even parity Hamming code received as 1100010 conta	inc 1 I	oit orr	or Th	o cori	roct
0.	code is:	11115 I 1	JIL EIII	OI. III	e con	ect
Option A:	1100110					
Option B:	1000010					
Option C:	1100011					
Option D:	1101010					
	Maria da da Cara da Feleza					
7.	Which of the following statement is False ?					
Option A: Option B:	Power dissipation of CMOS logic family is minimum. Fan out of CMOS family is maximum.					
Option C:	CMOS family has minimum propagation delay.					
Option D:	CMOS family has high noise margin.					
option b.	Civios ranny nas mgn noise margin.					
8.						
	The Verilog code given below is modelling of	·				
	module unknown (input a , b, c , d, x , y ,					
	output out);					
	assign out = x ? (y ? d : c) : (y ? b : a);					
	assign out = x . (y . a . c) . (y . a . a) ,					
	endmodule					
Option A:	behavioral, demultiplexer					
Option B:	data flow, demultiplexer					
Option C:	behavioral, multiplexer					
Option D:	data flow, multiplexer					
9.	Truthtable of a function F is given below. The minimized					
	POS equation of the function is F =	Α	В	С	F	
		0	0	0	Х	
		0	0	1	0	
		0	1	0	1	
		-	1		0	
		0		1	\vdash	
		1	0	0	0	
		1	0	1	0	
		1	1	0	Х	
		1	1	1	1	
Option A:	(A' + C) B'					
Option B:	(A + C') B					
Option C: Option D:	(A' + C) (B + C') (A + C') (B' + C)					
орион Б:	(5,10,10,10)					
	1					

10.	Which of the following conditions is False for interfacing of ICs belonging to two different logic families?
Option A:	Voн (driver) > Viн(load)
Option B:	Vol (driver) > Vil(load)
Option C:	loн (driver) > N Iнн (load)
Option D:	lot (driver) > N lit (load)

Q2.	Solve any Four out of Six (5 marks each).
(20 Marks)	Minimina the function (4/D O D C) = 5 m / 2 F C O 42 42 45 1 4/7 0) and
A	Minimize the function $f1(P,Q,R,S) = \Sigma$ m (2, 5, 6, 9, 12, 13, 15)+ d(7, 8) and implement using minimum number of only NAND gates.
В	Draw an 8 bit comparator using two 7485 ICs. In the diagram indicate the input data applied to the comparator for the comparison of two 8 bit numbers: A= 10010011, B = 01111101. Also indicate various output values in the same diagram.
С	Explain standard TTL NAND circuit operation with appropriate circuit diagram.
D	Draw Johnson counter circuit and neat wave forms. Specify the applications of the same.
E	Write a Verilog code for 2 : 4 Decoder with active low enable.Include appropriate comments in the code.
F	Perform the following conversions i) decimal number 49 to Excess 3 code1 mark ii) decimal number 72 to Gray code1 mark iii) Find Odd Parity Hamming code for the data 10113 marks

Q3.	Solve a	Solve any Two Questions out of Three (10 marks each).			
(20 Marks)					
	i) Explai	in what	is Master Slave JK flipflop and its a	advantage2 marks	
	ii) Conv below:	ert JK f	ipflop into MN flipflop. The truthta	able of MN flipflop is given	
	М	N	Q_{n+1}		
	0	0	0		
A	0	1	1		
	1	0	Q _n '		
	1	1	Q_n		
	Show a	ll the co	onversion steps.	8 marks	
	Design a Mealy type sequential state machine which detects a sequential state machine which will be sequential state machine which will be sequential state mach				
В	1001 received at its serial input X. The output Y goes high for one clock pulse				
	when the desired sequences is received; otherwise Y remains low.				
С	Explain	FPGA a	rchitecture with neat diagrams.		

Q4.	Solve any Four out of Si	ix (5 marks e	ach).			
(20 Marks)						
А	Design Mod 60 counter us	ing IC 7490. E	xplain the wo	rking.		
В	Explain how Universal shift register can be used as parallel to serial data converter.					
С	Identify equivalent states state diagram.	from the follo	owing table ar	nd draw a min	imized	
		Next State		Output		
	Present State	x = 0	x = 1	x = 0	x = 1	
	a	·c	f	1	0	
	b	e	d	1	0	
	c	a	d	1	0	
	d	e	d	0	1	
	e	a	b	0	1	
	f	e	f	0	1	
D	Write a Verilog code for a	T flip flop.				
E	Explain the internal struct following functions on PLA		d show the im	plementation	nof	
	f1 = A'B+ BC' + AB'D					
	f2= (A + B) (C' +D')					
F	Explain the working of BCI	O adder using	IC 7483.			

/.	Have you uploaded the correct file? *
	Mark only one oval.
	yes
	No

31/12/2021_Data Structures and Algorithms _Electronics and Computer Science (ECS) _Sem III_R19

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

*	Required
1.	Email *
2.	Enter your Name *
3.	Enter Exam Seat number(as per Hall Ticket) *
4.	Class Roll No: *
5.	GCR Number * Mark only one oval.
	GCR 1 GCR 2

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks			
1.	It is a first-in, first-out (FIFO) data structure in which the element that is inserted			
	first is the first one to be taken out.			
Option A:	Arrays			
Option B:	Linked list			
Option C:	Stacks			
Option D:	Queues			
	Will de la Control of			
2.	What is the postfix equivalent for infix expression $(A * B) + (C / D) - (D + E)$			
Option A:	AB*CD/+DE+-			
Option B:	AB*CD/DE++-			
Option C:	AB*CD/DE+-+			
Option D:	AB*CD/+D+E-			
Option D.	THE CONTENTS			
3.	Total number on nodes at the nth level of a binary tree can be given as			
Option A:	2^n			
Option B:	2^(n+2)			
Option C:	2^(n+1)			
Option D:	2^(n-1)			
4.	The circular queue will be full only when			
Option A:	FRONT = MAX -1 and REAR = Max -1			
Option B:	FRONT = 0 and REAR = Max -1			
Option C:	FRONT = MAX -1 and REAR = 0			
Option D:	FRONT = 0 and $REAR = 0$			
5.	The memory use of an adjacency matrix is			
Option A:	O(n)			
Option B:	O(n^2)			
Option C:	O(n^3)			
Option D:	O(log n)			
6.	A card game player arranges his cards and picks them one by one. With which sorting technique can you compare this example?			
Option A:	Bubble sort.			
Option B:	Selection sort.			
Option C:	Merge sort.			
Option D:	Insertion sort.			
Орион Б.	ALEXANDER DOTA			
7.	What is the disadvantage of linked list?			
Option A:	Must be declared to have some fixed size.			
Option B:	Slow search operation and requires more memory space.			
Option C:	Insertion and deletion of elements can be problematic because of shifting of			
	elements from their positions.			
Option D:	Complicated deletion algorithm.			

8.	For the directed acyclic graph (DAG) given below, which of the topological sort is not correct?
Option A:	A, B, C, D, E
Option B:	A, B, C, E, D
Option C:	A, C, B, D, E
Option D:	A, D, E, B, C
9.	What is the weighted external path length of tree T1?
	5 2 2 3 11 5
Option A:	67
Option B:	49
Option C:	77
Option D:	36
10.	What is the appropriate location in the hast table for key 67890 if size of hash table is 1000?
Option A:	617
Option B:	260
Option C:	0.37
Option D:	41958

Q2.	Solve any Four out of Six (5 marks each)				
A	Define data structure. Differentiate linear and non-linear data structure with example.				
В	Convert the following infix expression to postfix equivalent. $ (A-2*(B+C)/D*E) + F $				
С	Differentiate between Arrays and Linked Lists.				
D	What are the different ways to represent graphs in memory?				
E	Sort the elements in the following array using quick sort algorithm.				
	25 8 37 20 23 48				
F	Calculate the hash value for keys 1234 and 5642 using the mid-square method. The hash table has 100 memory locations.				

Q3.	Solve any Two Questions out of Three (10 marks each)			
A	Write a program in C to check for balanced parentheses in an expression using stack.			
В	Given the postorder and inorder traversal of a binary tree, construct the original tree:			
	Post order: DHIEBJFGCA			
	In-order: DBHEIAFJCG			
C	Consider the graph G given in Figure. Assume that G represents the daily flights between different cities and we want to fly from city A to I with minimum stops. Find the minimum path P from A to I using Breadth-First Search technique, given that every edge has a length of 1. Write a program in C to implement Breadth-First Search algorithm.			

Q4.	Solve any Tv	wo Questio	ns out of T	hree (10 ma	rks each)	
A	Write a short	note on Ap	plication of	linked list -	- Polynomia	l addition.
	Given the free code for each		the following	ng symbols,	Compute	the Huffman
В	Symbol	A	В	С	D	Е
	Frequency	24	12	10	8	8
С	Consider a h 72, 27, 36, 24				probing, ins	sert the keys

6.	Upload the file *
	Files submitted:
7.	Have you uploaded the correct file? *
	Mark only one oval.
	yes
	◯ No

3/1/2022_Database Management Systems _Electronics and Computer Science (ECS) _Sem III_R19

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

*	Required
1.	Email *
2.	Enter your Name *
3.	Enter Exam Seat number(as per Hall Ticket) *
4.	Class Roll No: *
5.	GCR No * Mark only one oval.
	GCR 1 GCR 2

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The term "FAT" is stands for
Option A:	File Allocation Tree
Option B:	File Allocation Table
Option C:	File Allocation Graph
Option D:	All of the options
option 2.	This the options
2.	A huge collection of the information or data accumulated form several different sources is known as:
Option A:	Data Management
Option B:	Data Mining
Option C:	Data Warehouse
Option D:	Data Double
1	
3.	In ER model the details of the entities are hidden from the user. This process is called:
Option A:	generalization
Option B:	specialization
Option C:	abstraction
Option D:	Relation
•	
4.	For select operation the appear in the subscript and the argument
	appears inthe paranthesis after the sigma.
Option A:	Predicates, relation
Option B:	Relation, Predicates
Option C:	Operation, Predicates
Option D:	Relation, Operation
5.	Which of the following is not a DDL command?
Option A:	TRUNCATE
Option B:	ALTER
Option C:	CREATE
Option D:	UPDATE
option D.	OFFICE
6.	Data Manipulation Language (DML) is not to
Option A:	Create information table in the Database
Option B:	Insertion of new information into the Database
Option C:	Deletion of information in the Database
Option D:	Modification of information in the Database
- F D.	mountain of information in the buttabase
7.	A function that has no partial functional dependencies is in form:
Option A:	3NF
Option B:	2NF
Option C:	4NF
Option D:	BCNF
Speron D.	BOIL

8.	Which data manipulation command is used to combines the records from one or more tables?
Option A:	SELECT
Option B:	PROJECT
Option C:	JOIN
Option D:	PRODUCT
9.	When a program is abnormally terminated, the equivalent of a command occurs.
Option A:	СОММІТ
Option B:	ROLLBACK
Option C:	QUIT
Option D:	EXIT
10.	The statement is used to end a successful transaction.
Option A:	COMMIT
Option B:	DONE
Option C:	END
Option D:	QUIT

Q2	Solve any Four out of Six (5 marks each)
A	Explain DBMS system architecture in detail.
В	Explain different types of Relational Algebra operations.
С	Explain the difference between File system model, Relational model and ER Model.
D	Define generalization and specialization and explain different keys in DBMS.
E	Define Transaction & Concurrency control
F	Define the term Weak entity, Partial Participation, Total participation and Entity type

Q3	Solve any Two Questions out of Three (10 marks each)
A	Draw ER Diagram for banking enterprise.
В	Consider the following schema for College Library. Student (Roll_no, Name, Branch) Book (ISBN, Title, Author, Publisher) Issue (Roll_no, ISBN, Date of_Issue) Write SQL queries for the following statements: i. List Roll Number and Name of all students of the branch IT. ii. Find the name of students who have issued a book published by 'XYZ' publisher. iii. List title of all books and their author issued by student 'Alice' iv. List title of all books issued on or before 31st DEC, 2019
С	Consider a relation R with five attributes ABCDE. You are given the following dependencies: $A \rightarrow B \qquad BC \rightarrow E \qquad ED \rightarrow A$ i. List all keys for R ii. Is R in $3NF$ iii. Is R in $BCNF$

A Solve all queries below using only select, project, Cartesian product, and natural join. First Schema Suppliers (sID, sName, address) Parts (pID, pName, colour) Catalog (sID, pID, price) Catalog[sID] ⊆ Suppliers[sID] Catalog[pID] ⊆ Parts[pID] i. Find the names of all red parts. ii. Find all prices for parts that are red or green. (A part may have different prices from differentmanufacturers.) iii. Find the sIDs of all suppliers who supply a part that is red or green. iv. Find the sIDs of all suppliers who supply a part that is red and green. v. Find the names of all suppliers who supply a part that is red or green. B Construct a dependency diagram of relation R and normalize it upto the BCNF Normal form. A B C D E F G C Define Normalization. Explain 1NF,2NF and 3NF with suitable example.	Q4	Solve any Two Questions out of Three (10 marks each)
A B C D E F G		and natural join. First Schema Suppliers (sID, sName, address) Parts (pID, pName, colour) Catalog (sID, pID, price) Catalog[sID] ⊆ Suppliers[sID] Catalog[pID] ⊆ Parts[pID] i. Find the names of all red parts. ii. Find all prices for parts that are red or green. (A part may have different prices from differentmanufacturers.) iii. Find the sIDs of all suppliers who supply a part that is red or green. iv. Find the sIDs of all suppliers who supply a part that is red and green. v. Find the names of all suppliers who supply a part that is red
C Define Normalization. Explain 1NF,2NF and 3NF with suitable example.	В	BCNF Normal form.
	С	Define Normalization. Explain 1NF,2NF and 3NF with suitable example.

6.	Upload the file *
	Files submitted:
7.	Have you uploaded the correct file? *
	Mark only one oval.
	yes
	◯ No