University of Mumbai

Examination 2021 under cluster ____ (Lead College: ______)

Examinations Commencing from 15th June 2021 to 24th June 2021

Program: BE (Electronics)

Curriculum Scheme: Rev 2016 (CBCGS)

Examination: SE Semester III

Course Code: ELX301 and Course Name: Applied Mathematics III

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find Laplace Transform of $e^{3t}H(t-2)$.
Option A:	$e^{2(s+3)} \cdot \frac{1}{s+3}$
Option B:	$e^{-2(s-3)} \cdot \frac{1}{s-3}$
Option C:	$e^{2(s-3)} \cdot \frac{1}{s-3}$
Option D:	$e^{-2(s+3)} \cdot \frac{1}{s+3}$
2.	The Laplace transform of e^{-3t} erf \sqrt{t} is
Option A:	$\frac{1}{\sqrt{1-1}}$
Outing Dr	$(s-4)\sqrt{s-3}$
Option B:	$\frac{1}{(s-3)\sqrt{s-4}}$
Option C:	1
-	$\overline{(s+4)\sqrt{s+3}}$
Option D:	1
	$(s+3)\sqrt{s+4}$
3.	The value of the integral $\int_0^\infty e^{-t} \sinh 2t \sin 3t dt$ is
Option A:	1
Ĩ	5
Option B:	$\frac{1}{15}$
Option C:	1
Ontion Du	25
Option D:	$\frac{1}{2r}$
	55
4.	The inverse Laplace transform of $tan^{-1}(s)$ is
Option A:	$-\sin t$
L	\overline{t}
Option B:	$-\frac{e^{-4t}\cosh t}{t}$
	t
Option C:	$\frac{e^{-\pi \iota} sint}{t}$

Option D:	sint
	t
5	T
	The inverse Laplace transform of $\left[\frac{1}{s^2 - 2s + 2}\right]$ is
Option A:	$\frac{e^{-(t+\pi)}\sin(t-\pi)H(t-\pi)}{(t+\pi)}$
Option B:	$\frac{e^{(t+\pi)}\sin(t+\pi)H(t+\pi)}{(t-\pi)}$
Option C:	$\frac{e^{(t-\pi)}\sin(t-\pi)H(t-\pi)}{e^{(t-\pi)}\sin(t-\pi)H(t-\pi)}$
Option D.	$e^{(t-\pi)}\sin(t+\pi)H(t+\pi)$
6.	The inverse Laplace transform of $\frac{1}{s\sqrt{s+4}}$ is
Option A:	$\frac{1}{2} \operatorname{erf}_{c}(2\sqrt{t})$
Option B:	$\frac{1}{2} \operatorname{erf}(2\sqrt{2t})$
Option C:	$\frac{1}{2} \operatorname{erf}(4\sqrt{t})$
Option D:	$\frac{1}{2}$ erf $(2\sqrt{t})$
7.	If $f(x) = x^2 - \pi < x < \pi$ then the value of $\sum_{i=1}^{\infty} \frac{1}{i}$ is
	$\prod_{n=1}^{n} n^{2} $
Option A:	$\frac{\pi^2}{8}$
Option B:	$\frac{\pi^2}{6}$
Option C:	$\frac{\pi^2}{12}$
Option D:	π^4
	6
8.	The Fourier series expansion of $f(x) = \begin{cases} -c, -1 < x < 0 \\ c, 0 < x < 1 \end{cases}$ is
Option A:	$\frac{c}{4\pi} \left[\sin \pi x + \frac{1}{2} \sin 3\pi x + \frac{1}{5} \sin 5\pi x + \dots \right]$
Option B:	$\frac{4c}{\pi} \left[\cos \pi x + \frac{1}{3} \cos 3\pi x + \frac{1}{5} \cos 5\pi x + \cdots \right]$
Option C:	$\frac{4c}{\pi} \left[\sin \pi x - \frac{1}{3} \sin 3\pi x + \frac{1}{5} \sin 5\pi x - \cdots \right]$
Option D:	$\frac{4c}{\pi} \left[\sin \pi x + \frac{1}{3} \sin 3\pi x + \frac{1}{5} \sin 5\pi x + \dots \right]$
Q	The complex form of Fourier series for $f(x) - 2x$ in [0, 2π] is
Option A:	$\sum_{n=1}^{\infty} \frac{1}{n!} = \sum_{n=1}^{\infty} \frac{1}{n!}$
- r ton th	$2\pi + 2i\sum_{n=-\infty}^{\infty} \frac{e^{nix}}{n}, for n \neq 0$
Option B:	\sim
	$2\pi + 2i\sum_{n=-\infty}^{\infty} \frac{e^{-nix}}{n}, for n \neq 0$

Option C:	
1	$2\pi + 2i$ e^{nix} for $n \neq 0$
	$2n+2i$ $\sqrt{4n}$, $\int 0^{n} n \neq 0$
	$n = -\infty$
Option D:	$\sum_{\rho=nix}^{\infty}$
	$2\pi + 2i \sum \frac{e}{2\pi}$, for $n \neq 0$
	$\sum_{n} 8n$
	$n = -\omega$
10.	The half range sine series of $f(x) = x(\pi - x)$ in $(0, \pi)$ is
Option A:	
1	$\left \frac{\pi}{\pi}\right ^{\frac{1}{1^4}} \sin \pi x - \frac{\pi}{3^4} \sin 3\pi x + \frac{\pi}{5^4} \sin 5\pi x - \cdots$
Option B:	
	$\frac{1}{\pi} \left[\frac{1}{1^3} \sin \pi x + \frac{1}{3^3} \cos 3\pi x + \frac{1}{5^3} \sin 5\pi x + \cdots \right]$
Option C:	$\begin{bmatrix} 8 \begin{bmatrix} 1 & 1 & 1 \\ -\sin \pi x + 1 & \sin \pi x + 1 \end{bmatrix}$
	$\frac{\pi}{\pi} \left[\frac{1^3}{1^3} \sin^2 \pi x + \frac{3^3}{3^3} \sin^3 \pi x + \frac{5^3}{5^3} \sin^3 \pi x + \cdots \right]$
Option D:	$\left \frac{8}{2}\left[\frac{1}{2}\cos \pi r + \frac{1}{2}\cos 3\pi r + \frac{1}{2}\cos 5\pi r + \cdots\right]\right $
	$\pi [1^3 \cos nx + 3^3 \cos 3nx + 5^3 \cos 3nx + 1]$
11	
11.	The value of $\begin{bmatrix} b \times \overline{c} & \overline{a} \times \overline{c} & \overline{a} \times b \end{bmatrix}$ is
Option A:	$\left -\left[\overline{a} \overline{b} \overline{c} \right]^2 \right $
Option B:	$\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}^2$
Option C:	$\begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}^3$
Option D:	$\begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}^4$
12.	The unit normal vector to the surface $xy^3z^2 = 4$, at $(-1, -1, 2)$ is
Option A:	-(i+3j-k)
1	$\frac{1}{\sqrt{11}}$
Option B:	(i+3i-k)
-1	$\frac{\sqrt{11}}{\sqrt{11}}$
Option C:	-(i+3i+k)
- F	
	$\frac{-(\ell+3j+k)}{\sqrt{11}}$
Option D:	$\frac{\frac{(i+3j+k)}{\sqrt{11}}}{-(i-3i-k)}$
Option D:	$\frac{\frac{(i+3j+k)}{\sqrt{11}}}{\frac{-(i-3j-k)}{\sqrt{11}}}$
Option D:	$\frac{\frac{(i+3j+k)}{\sqrt{11}}}{\frac{-(i-3j-k)}{\sqrt{11}}}$
Option D:	$\frac{-(i-3j-k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)i + (3xz^2 - y)k$ is irrotational.
Option D: 13.	$\frac{-(i-3j-k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is
Option D: 13. Option A:	$\frac{-(i-3j-k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$
Option D: 13. Option A: Option B:	$\frac{-(i-3j-k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$
Option D: 13. Option A: Option B: Option C:	$\frac{-(i + 3j + k)}{\sqrt{11}}$ $\frac{-(i - 3j - k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$ $a = 1, b = 1, c = 6$
Option D: 13. Option A: Option B: Option C: Option D:	$\frac{-(i - 3j - k)}{\sqrt{11}}$ $\frac{-(i - 3j - k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$ $a = 1, b = 1, c = 6$ $a = 6, b = 1, c = 1$
Option D: 13. Option A: Option B: Option C: Option D:	$\frac{-(i - 3j - k)}{\sqrt{11}}$ $\frac{-(i - 3j - k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$ $a = 1, b = 1, c = 6$ $a = 6, b = 1, c = 1$
Option D: 13. Option A: Option B: Option C: Option D: 14.	$\frac{-(i-3j+k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$ $a = 1, b = 1, c = 6$ $a = 6, b = 1, c = 1$ Using Green's theorem, the value of $\int_C (P dx + Q dy)$ is
Option D: 13. Option A: Option B: Option C: Option D: 14. Option A:	$\frac{-(i-3j+k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$ $a = 1, b = 1, c = 6$ $a = 6, b = 1, c = 1$ Using Green's theorem, the value of $\int_C (P dx + Q dy)$ is $\iint \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial x}\right) dx dy$
Option D: 13. Option A: Option B: Option C: Option D: 14. Option A:	$\frac{-(i-3j-k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational, then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$ $a = 1, b = 1, c = 6$ $a = 6, b = 1, c = 1$ Using Green's theorem, the value of $\int_C (P dx + Q dy)$ is $\iint_R \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}\right) dx dy$
Option D: 13. Option A: Option B: Option C: Option D: 14. Option A: Option A:	$\frac{-(i-3j-k)}{\sqrt{11}}$ $\frac{-(i-3j-k)}{\sqrt{11}}$ If $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k \text{ is irrotational,}$ then the value of a, b, c is $a = 6, b = 1, c = 6$ $a = 1, b = 6, c = 1$ $a = 1, b = 1, c = 6$ $a = 6, b = 1, c = 1$ Using Green's theorem, the value of $\int_C (P dx + Q dy)$ is $\iint_R \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}\right) dx dy$ $\iint_R \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y}\right) dx dy$

1	$\iint_{R} \left(\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} \right) ax ay$
Option D:	$-\iint\limits_{R} \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}\right) dx dy$
15	
13.	For any closed surface S, the value of $\iint_{S} (\nabla \phi \times \nabla \psi) \cdot dS$ is
Option R:	1
Option D:	-1
Option D:	8
16.	Using Stokes's theorem, the value of
	$\int_{c} (x^{2}i + xyj) \cdot d\bar{r} \text{ where } c \text{ is boundary of the rectangle}$
	x = 0, y = 0, x = 2, y = 3
Option A:	3
Option B:	6
Option C:	9
Option D:	18
17.	If the imaginary part of analytic function is $\tan^{-1}\left(\frac{y}{z}\right)$.
	then the analytic function must be
Option A:	$-\log z + c$
Option B:	$\log \sqrt{z} + c$
Option C:	$\tan(\log z) + c$
Option D:	$\log z + c$
10	
18.	Which one of the following functions is Harmonic Function? $w = w^3 + 2w^2w$
Option B:	$\frac{u = y^2 + 3x^2y}{u = u^3 - 3x^2u}$
Option C:	$\frac{u-y}{v-3x} = \frac{y^2}{v}$
Option D:	$\frac{u-y}{u=y^3-3x^2}$
• F ···· - ·	
19.	Find the fixed points of the bilinear transformation of $w = \frac{2z+6}{z+7}$
Option A:	1, -6
Option B:	-1, 6
Option C:	-1, -2
Option D:	1, -2
20	The value of $I(x)$ is
Option A:	$\overset{\circ}{\sim}$
- 1	$(-1)^m (x/2)^{2m+n}$
	$\sum_{m=0} m! \overline{n+m-1} $
Option B:	$\sum_{\alpha}^{m-1} (-1)^{m} (m+2)^{2m-n}$
	$\sum \frac{(-1)^{n}(x/2)^{2n}}{1}$
	$\sum_{m=0}^{n} m! (n+m+1)$

Option C:	$\sum_{m=0}^{\infty} \frac{(-1)^m (x/2)^{2m+n}}{m! n+m+1 }$
Option D:	$\sum_{m=0}^{\infty} \frac{(-1)^m (x/2)^{2m+n}}{m! \overline{n-m+1} }$

Q2	Solve any Four out of Six5 marks each	ch
А	Find the Laplace transform of: $\cosh t \int_0^t e^u \cosh u du$	
В	Using convolution theorem, find inverse Laplace transforms of $\frac{1}{(s-2)(s+2)}$	$(2)^{2}$
С	Find complex form of Fourier Series for $f(x)=e^{-x}$ in the interval (-1,1)	
D	Find $f(r)$, so that the vector $f(r)\overline{r}$ is both solenoidal and irrotational	
	Using stoke's theorem evaluate $\int_{C} \overline{F} \cdot d\overline{r}$	
E	where $\overline{F} = yi + zj + xk$ and C is the boundary of the surface $x^2 + y^2 = 1 - z$, $z > 0$	
F	Find the Bilinear Transformation which maps the points $z = \infty$, i, 0 onto the points $w = 0$, i, ∞ .	the

Q3	Solve any Four out of Six5 marks each
А	Prove that $\int_0^\infty e^{-\sqrt{2}t} \left\{ \frac{\sin t \sinh t}{t} \right\} dt = \frac{\pi}{8}$
В	Find inverse Laplace transform of $\frac{1}{(s+3)(s^2+2s+2)}$
С	Find the Fourier series expansion of $f(x) = \begin{cases} 2, -2 < x < 0 \\ x, 0 < x < 2 \end{cases}$
D	Find the angle between the surfaces
D	$x \log z + 1 - y^2 = 0, x^2 y + z = 2 \text{ at } (1, 1, 1)$
	Using Gauss Divergence theorem, prove that
Е	$\iint (y^2 z^2 \mathbf{i} + z^2 x^2 \mathbf{j} + y^2 z^2 \mathbf{k}) \cdot \overline{\mathbf{N}} \mathrm{dS} = \frac{\pi}{12}$
	where S is the part of the sphere $x^2 + y^2 + z^2 = 1$ above the XY plane
F	Prove that $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \cdot \left\{ \frac{3-x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}$

University of Mumbai Examination 2021 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 15th June 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Code: ELX302 and Course Name: Electronic Devices and Circuits-I

Time: 2 hour

Max. Marks: 80

Q1. 40 Marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Name the current produced due to motion of charge carriers from a region of higher concentration to a region of lower concentration?
Option A:	drift current
Option B:	diffusion current
Option C:	electron current
Option D:	hole current
▲	
2.	Why is the silicon mostly chosen when compared to germanium?
Option A:	low power consumption
Option B:	high efficiency
Option C:	greater working temperature
Option D:	large I _{CBO}
3.	If the temperature of a crystal diode increases, then leakage current
Option A:	remains the same
Option B:	decreases
Option C:	increases
Option D:	becomes zero
4.	Assume the diode is ideal. What will be the peak value of the output
	waveform for the given circuit.
Option A:	Vm
Option B:	-Vm
Option C:	+(Vm-Vd)
Option D:	-(Vm-Vd)
5.	If the input junction and the output junction is forward biased, then the
	transistor is said to be in region
Option A:	Active Region
Option B:	Cut off Region

Option C:	Breakdown Region
Option D:	Saturation Region
6.	For a Voltage divider circuit having RC=R1=R2=RE=1KΩ, if VCC=20V,
	find IC when $Vce = Vcc$.
Option A:	0
Option B:	2mA
Option C:	20mA
Option D:	1mA
1	
7.	Input impedance Zin for a voltage divider CE Amplifier is given as
Option A:	Zin=R1 R2 re
Option B:	Zin=R1 R2
Option C:	$Z_{in}=R_{1} R_{2} r\pi$
Option D:	$Z_{in}=R_{1} r_{\pi}$
option 21	
8.	For a Voltage divider bias circuit, having R1=R2=10KQ, RC = 4.7 kQ, RE=1
	K Ω , What is the value of collector current at saturation if V _{CC} =10V?
Option A:	1A
Option B:	10mA
Option C:	1.75mA
Option D:	1mA
9.	Name this cumulative process of rise in temperature in BJT.
	Landa ta
	ICBO
	$\left(\left(r \uparrow \left(r \uparrow \left(0 \uparrow r \right) \right) \right) \right) = \left(I_{CEO} \uparrow \left(I_{CEO} \uparrow \right) \right)$
	(ict)
Option A:	Stabilization
Option B:	Thermal Runaway
Option C:	Early effect
Option D:	Base width modulation
10.	The capacitive reactance, XC, of the bypass capacitor should be at least
	times smaller than RE at the minimum frequency for which the
	amplifier must operate.
Option A:	10
Option B:	100
Option C:	50
Option D:	500
1 1	
	MOSFET is a device
Option A:	Voltage Controlled
Option B:	Current Controlled
Option C:	Impedance Controlled

Option D:	Admittance Controlled
12.	What will be the current flowing through the gate terminal of an FET?
Option A:	IDSS
Option B:	IDSS/2
Option C:	IDSS/4
Option D:	zero
13.	The can be operated in two modes: Depletion mode and
	enhancement mode.
Option A:	BJT
Option B:	JFET
Option C:	D-MOSFET
Option D:	Diode
14.	For levels of $VGS > VT$, the drain current is related to the applied gate-to-
	source
	voltage by the following nonlinear relationship:
Option A:	$ID = k (VGS - VT)^2$
Option B:	ID = k (VGS - VT)
Option C:	$ID = (VGS - VT)^2$
Option D:	$ID = k (VGS - VT^2)$
15.	If a MOSFET is to be used as an amplifier then it must work in
Option A:	Cut-off region
Option B:	Triode region
Option C:	Saturation region
Option D:	Both cut-off and triode region can be used
16.	is a semiconductor formed by a junction of semiconductor
	with a metal.
Option A:	Schottky Diode
Option B:	Photo diode
Option C:	Tunnel diode
Option D:	Gunn diode
17.	Name the component placed in a counter system that helps in counting the
	objects as they are passing on a conveyor
Option A:	Solar Cell
Option B:	Schottky diode
Option C:	Photo diode
Option D:	LED
18.	Efficiency of center tapped full wave rectifier is
Option A:	81.2%
Option B:	50%
Option C:	40.6%
Option D:	45.3%
19.	What is the peak inverse voltage across diode for a center tapped full wave

	rectifier?
Option A:	Vm
Option B:	2Vm
Option C:	Vm/2
Option D:	Vm/1.44
20.	The value of inductance in LC filter at which the load current does not fall to
	zero is called
Option A:	Peak inductance
Option B:	Critical inductance
Option C:	Cut in inductance
Option D:	Damping inductance

Q2	
(20 Marks)	
A	Solve any Two 5 marks each
1.	Explain the construction and working of JFET with neat diagrams.
11.	Explain the operation of BJT as an amplifier.
iii.	Find IBQ, ICQ and VCEQ for the given bias circuit. Given $\beta=100$ 12V $470k\Omega$ R_b R_b C B E
В	Solve any One 10 marks each
i.	Find Zi, Zo, Av and Ai for the following circuit $ \begin{array}{c} 22 V \\ 6.8 k\Omega \\ 10 \mu F \\ \hline F_{1} \\ \hline F_{1} \\ \hline F_{2} \\ \hline F$
ii.	Determine <i>IDQ</i> , <i>VGSQ</i> , and <i>VDS</i> for the network given

40V 22MΩ 22MΩ 3kΩ VGS(TH)=5V ID(on)=3mA at VGS(on)=10V 18MΩ 0.82kΩ

Q3 (20 Marks)	
A	Solve any Two 5 marks each
i.	Explain the VI characteristics of PN junction diode.
ii.	Compare HWR, Centre tapped FWR and Bridge Rectifier
iii.	Explain the construction, working and characteristics of Photodiode.
В	Solve any One 10 marks each
i.	Design a single stage CE Amplifier to give a voltage gain $Av \ge 80$ with stability factor S ≤ 11 and output voltage of, Vo rms=3V. Assume Vcc=18V and VBE=0.7V. Use npn transistor with specifications: hfe (min)=115, hfe(typ)=180, hie=4.5k Ω , and frequency FL \le 300Hz.
ii.	Perform ac analysis on a bypassed CS D-MOSFET amplifier with voltage divider bias circuit with neat diagrams to obtain the expression for input impedance (Zi), output impedance (Zo) input and voltage gain (Av).

University of Mumbai Examination 2021 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 15th June 2021 Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Code: ELX303 and Course Name: Digital Circuit Design

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
	compulsory and carry equal marks
1	Decimal number of binary number 10111 is
Option A:	21
Option B:	22
Option C:	23
Option D:	24
1	
2.	Binary codes of octal no. $(645)_8$ is
Option A:	110 100 110
Option B:	110 101 100
Option C:	110 101 100
Option D:	110 100 101
3.	$(D8A)_{16} - (426)_{16}$ is
Option A:	965
Option B:	964
Option C:	963
Option D:	962
4.	Binary representation of gray no. 10110 is
Option A:	
Option B:	11001
Option C:	
Option D:	10110
5	In BCD invalid codes are
$\frac{J}{\text{Option } \Delta}$	R to 15
Option R:	7 to 14
Option C:	10 to 15
Option D:	10 to 15
option D.	
6.	In Boolean algebra what is value of A+AB=?
Option A:	A+B
Option B:	A-B
Option C:	В
Option D:	A

7.	Which of the following expressions is in the sum-of-products form?
Option A:	(A + B)(C + D)
Option B:	(A. B)(C .D)
Option C:	A.B .(CD)
Option D:	AB + CD
8.	Don't care conditions can be used for simplifying Boolean expressions in
Option A:	Registers
Option B:	Terms
Option C:	K-maps
Option D:	Latches
-	
9.	What is a multiplexer?
Option A:	It is a type of decoder which decodes several inputs and gives one output
Option B:	A multiplexer is a device which converts many signals into one
Option C:	It takes one input and results into many output
Option D:	It is a type of encoder which
1	
10.	In a multiplexer, the selection of a particular input line is controlled by
Option A:	Data controller
Option B:	Selected lines
Option C:	Logic gates
Option D:	Both data controller and selected lines
-	
11.	Which flip-flop is called as Delay Filp-Flop
Option A:	S—R FLIP FLOP
Option B:	J-KFLIP FLOP
Option C:	D FLIP FLOP
Option D:	T FLIP FLOP
_	
12.	The word de-multiplexer means
Option A:	one in to many
Option B:	Many into one
Option C:	Distributor
Option D:	converter
13.	The full form of SR is
Option A:	System rated
Option B:	Set reset
Option C:	Set ready
Option D:	Set Rated
14.	The characteristic equation of S-R latch is
Option A:	Q(n+1) = S + Q(n)R'
Option B:	Q(n+1) = SR + Q(n)R
Option C:	Q(n+1) = S'R + Q(n)R
*	

Option D:	Q(n+1) = S'R + Q'(n)R
15.	How is a J-K flip-flop made to toggle?
Option A:	J = 0, K = 0
Option B:	J = 1, K = 0
Option C:	J = 0, K = 1
Option D:	J = 1, K = 1
16.	BCD counter is also known as
Option A:	Parallel counter
Option B:	Decade counter
Option C:	Synchronous counter
Option D:	VLSI counter
17.	CMOS gates are commercially available as which of the following series?
Option A:	1000
Option B:	2000
Option C:	3000
Option D:	4000
18.	Which of the following is the most widely employed logic family?
Option A:	Emitter-coupled logic
Option B:	Transistor-transistor logic
Option C:	CMOS logic family
Option D:	NMOS logic
19.	The full form of SIPO is
Option A:	Serial-in Parallel-out
Option B:	Parallel-in Serial-out
Option C:	Serial-in Serial-out
Option D:	Serial-In Peripheral-Out
20.	What is the difference between a shift-right register and a shift-left register?
Option A:	There is no difference
Option B:	The direction of the shift
Option C:	Propagation delay
Option D:	The clock input

Q2 (20 Marks)	
Α	Solve any Two 5 marks each
i.	Convert D flip flop to T flip flop.
ii.	Design FULL ADDER 3 lines to 8 lines decoder.
iii.	What is the difference between asynchronous counter and synchronous
	counter
В	Solve any One 10 marks each
i.	Design 2 bit synchronous counter using J-K flip-flop
ii.	Implement the expression using K-Map for the function $F(A,B,C,D) =$

$\overline{\Sigma}$ m(2.3.6.7.8.9.13.14)

Q3. (20 Marks)	
Α	Solve any Two 5 marks each
i.	Draw and explain the circuit diagram of 2-input TTL NAND gate.
ii.	State and explain with examples DeMorgon's Law
iii.	Design 2 bit Grey Code Counter using T Flip-Flop
В	Solve any One 10 marks each
i.	Simplify 4 variable Boolean function using Quine-McClusky technique
	$F(A,B,C,D) = \sum m(0,1,2,3,8,9,10,11,12,13)$
ii.	Explain Lock-Out condition in counters with examples.

University of Mumbai

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 15th June 2021 Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Code: **ELX304** and Course Name: **Electrical Network Analysis and Synthesis** Time: 2-hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	In Superposition theorem, while considering a source, all other voltage sources are?
Option A:	open circuited
Option B:	short circuited
Option C:	change its position
Option D:	removed from the circuit
2.	The maximum possible mutual inductance of two inductively coupled coils with self-inductances $L1 = 25$ mH & $L2 = 100$ mH is given by
Option A:	125 mH
Option B:	75 mH
Option C:	50 mH
Option D:	20 mH
3.	For transfer of maximum power, the relation between load resistance R and internal resistance r of the voltage source is
Option A:	R = 2r
Option B:	R = 1.5r
Option C:	R = r
Option D:	R = 0.5r
4.	In the circuit shown, find the current through 3Ω resistor using Superposition theorem. $ \begin{array}{c} $
Option A:	6
Option B:	5
Option C:	5.6
Option D:	6.5

5	For transfer of maximum power, the relation between load resistance R and
5.	internal resistance r of the voltage source is
Option A:	R = 2r
Option B:	R = 1.5r
Option C:	$\mathbf{R} = \mathbf{r}$
Option D:	R = 0.5r
1	
6.	Norton's current in the following figure is
Option A:	2i/5 Amp
Option B:	Zero
Option C:	Infinite
Option D:	2i/6 Amp
7.	Superposition theorem states that the response in any element is the
	of the responses that can be expected to flow if each source acts
	independently of other sources.
Option A:	Algebraic sum
Option B:	Vector sum
Option C:	Nultiplication
Option D:	Subtraction
0	$\Delta t t = 0^{-1}$ No saturation condition has been reached
0.	At $t = 0$ No saturation condition has been reached.
	At $t = 0$ Switching action for application of DC source to capacitive circuit.
	At $t = 0^+$ What will be the status of inductor?
Option A:	As it is
Option B:	Open Circuit
Option C:	Short Circuit
Option D:	Current Source
1	
9.	At $t = 0^+$ the current i_1 in figure is
	$\begin{bmatrix} \cdot & \\ \top & \\ \end{bmatrix} = \begin{bmatrix} \cdot & \\ \cdot $
	$\left \right\rangle^{H} = \left \left\langle $
Ontion A:	V / 2P
Option R:	$\frac{-v}{2R}$
Option C:	$\frac{-\mathbf{v} / \mathbf{R}}{\mathbf{V} / A \mathbf{D}}$
Option C.	

Option D:	Zero
10.	The time constant of the network shown in figure is
	$10 V \pm 2R \pm c$
Option A:	2RC
Option B:	3RC
Option C:	RC (1 / 2)
Option D:	RC (2 / 3)
11.	In series RC circuit the time constant 'T' is given by –
Option A:	CR
Option B:	R/C
Option C:	C / R
Option D:	R+C
12.	If excitation and response are measured at the same ports, the network function is
	known as
Option A:	RL network only
Option B:	RC network only
Option C:	LC network only
Option D:	RL as well as RC network
12	
13.	The condition for reciprocity of Y parameters –
Option A:	$\mathbf{Y}_{12} = \mathbf{Y}_{21}$
Option B:	$\begin{array}{c} \mathbf{Y}_{11} = \mathbf{Y}_{22} \\ \mathbf{W} = \mathbf{W} \\ \end{array}$
Option C:	$\begin{array}{c} \mathbf{Y}_{12} \cdot \mathbf{Y}_{21} = \mathbf{I} \\ \mathbf{V} \cdot \mathbf{V} = \mathbf{I} \end{array}$
Option D:	Y_{11} . $Y_{22} = 1$
1.4	The condition for symmetry of 7 nonometers
14.	The condition for symmetry of Z parameters –
Option R:	$Z_{12} = Z_{21}$
Option C:	$Z_{11} - Z_{22}$
Option D:	$\begin{array}{c} Z_{12} \cdot Z_{21} - 1 \\ \hline \end{array}$
Option D.	L_{11} . $L_{22} - 1$
15	The necessary and sufficient condition for a rational function $F(s)$ to be the
1.5.	driving-point impedance of an RC network is that all poles and zeros should be
Option A:	simple and lie on the negative real axis in the s-plane
Option R.	complex and lie in the left half of s-plane
Option C.	complex and lie in the right-half of s-plane
Option D	simple and lie on the positive real axis of the s-plane
option D.	
16	The number of roots of $S^3 + 5S^2 + 7S + 3 = 0$ in the left half of s-plane is
Option A:	Zero
Option B:	One
Option C:	Two
option C.	

Option D:	Three
17.	The pole-zero pattern of a particular network is shown in Figure. It is that of an $j\omega$ ϕ j^2 $\times j^1$ ϕ $-j^2$ ϕ $-j^2$
Option A:	LC Network
Option B:	RC Network
Option C:	RL Network
Option D:	Only Resistive Network
18.	Filter have the -
Option A:	Characteristic impedance is resistive in stop band
Option B:	Characteristic impedance is reactive in pass band
Option C:	Characteristic impedance is resistive in pass band
Option D:	Characteristic impedance is infinite in stop band
19.	If f_1 and f_2 are the lower and upper cut off frequencies of the band pass filter, the series impedance Z_1 is
Option A:	Capacitive at f ₁
Option B:	inductive at f ₁
Option C:	resistive at f ₂
Option D:	zero at f ₂
20.	The phase constant β of the filter during stop band is
Option A:	Zero radian
Option B:	
Option C:	
Option D:	$ \angle \pi$

Q2	Solve any Two Questions out of Three 10 marks each	
А	Define transient period and transient response.	
	The series RC circuit shown in figure, the voltage across C starts increasing	
	when the DC source is switched ON. The rate of increase of voltage across	
	C at the instant just after the switch is closed i.e., at $t = 0^+$ will be –	

В	State the steps for solving the example based on Thevenin's theorem. Prove that, at maximum power condition the efficiency is%
С	Obtain the doted equivalent circuit for the coupled circuit shown in fig. below and find mesh currents. Also find the voltage across the capacitor. $ \int_{j5 \Omega} \int_{j$

Q3.	Solve any Two Questions out of Three 10 marks each	
	Currents I1 and I2 entering at port 1 &port 2 respectively of a two-port network are given by following equations:	
А	$I_1 = 0.5 V_1 - 0.2 V_2$	
	$I_2 = -0.2 V_1 + V_2$	
	Find Y, Z and ABCD parameters for the network.	
B	Test whet her the polynomial	
D	$\mathbf{P}(\mathbf{s}) = \mathbf{S}^7 + 2\mathbf{S}^6 + 2\mathbf{S}^5 + \mathbf{S}^4 + 4\mathbf{S}^3 + 8\mathbf{S}^2 + 8\mathbf{S} + 4$ is Hurwitz	
	What is filter?	
	Find the characteristic impedance, cut-off frequency and pass band for the	
	network shown below.	
С	0.4 μF 0.4 μF	
	g 50 mH ₀o	

University of Mumbai Examination 2021 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 15th June 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Name: Electronic Instruments and Measurements

Course Code: ELX305 and Time: 2 hour

Max. Marks: 80

01	Channe the connect oution for following supertions. All the Questions are computed as	
Q1	Choose the correct option for following questions. All the Questions are compulsory	
01	Strain gauge LVDT and thermocounie are examples of	
Q1. Ontion A:	Strain gauge, LVDT and thermocouple are examples of	
Option A.	Storage Devices	
Option B:	Filters	
Option C:		
Option D:	Display Units	
02	A digital storage oscilloscope has of operation	
Q2. Ontion A:	3 primary modes	
Option B:	2 primary modes	
Option C:	4 primary modes	
Option D:	5 primary modes	
option D.		
Q3.	The analog signal is digitized using	
Option A:	D/A converter	
Option B:	Oscillator	
Option C:	A/D converter	
Option D:	Rectifier	
Q4.	Which part is called as heart of CRO?	
Option A:	CRT	
Option B:	Sweep generator	
Option C:	Trigger circuit	
Option D:	Amplifier	
Q5.	In terms of the division on screen, the voltage of the waveform in CRO is	
Option A:	Average voltage	
Option B:	RMS voltage	
Option C:	Peak to peak voltage	
Option D:	Maximum voltage	
Q6.	Smallest change which a sensor can detect is	

Option A:	Resolution
Option B:	Accuracy
Option C:	Precision
Option D:	Scale
Q7.	A rotameter is a device used to measure
Option A:	Velocity of fluid in pipes
Option B:	Velocity of gauges
Option C:	Vortex flow
Option D:	Flow of fluids
Q8.	A type J thermocouple is made of the following metals:
Option A:	Aluminum and Tungsten
Option B:	Iron and Constantan
Option C:	Platinum and Platinum/Rhodium alloy
Option D:	Copper and Constantan
Q9.	Function of transducer is to convert
Option A:	Electrical signal into non electrical quantity
Option B:	Non electrical quantity into electrical signal
Option C:	Electrical signal into mechanical quantity
Option D:	Mechanical to non mechanical quantity
Q10.	Change in output of sensor with change in input is
Option A:	Threshold
Option B:	Slew rate
Option C:	Sensitivity
Option D:	Fidelity
Q11	Wheatstone bridge is a
Option A:	A.c. bridge
Option B:	D.c. bridge
Option C:	High voltage bridge
Option D:	Power dissipation bridge
Q12.	Sensitivity is defined as
Option A:	Amount of voltage per unit current
Option B:	Amount of power per
	unit voltage
Option C:	Amount of resistance per unit voltage
Ontion Di	Amount of deflection per unit current
Option D:	
Option D:	
Q13	Kelvin's bridge consists of
Q13	Kelvin's bridge consists of
Q13 Option A:	Kelvin's bridge consists of Double bridge

Option C:	Half bridge
Option D:	Three fourth bridge
-	
Q14	Closeness of measured value to true value is
Option A:	Accuracy
Option B:	Precision
Option C:	Correction
Option D:	Uncertainty
Q15	Which of the following is caused by Careless handling?
Option A:	Systematic error
Option B:	Gross error
Option C:	Random error
Option D:	Non systematic error
Q16	In a measurement, what is the term used to specify the closeness of two or more measurements?
Option A:	Precision
Option B:	Accuracy
Option C:	Fidelity
Option D:	Threshold
Q17	In function generator, the output waveform of integrator is
Option A:	Sinusoidal
Option B:	Square
Option C:	Triangular
Option D:	Saw-tooth
Q18	Vibration galvanometers are used for
Option A:	Very high frequency
Option B:	Very low frequency
Option C:	Low audio frequency
Option D:	High audio frequency
-	
Q19	For very small value of resistances we use
Option A:	Maxwells Bridge
Option B:	Wheatstones bridge
Option C:	Kelvins double bridge
Option D:	Megger
Q20	On what Principle does the Q meter operate
Option A:	Series Resonance
Option B:	Parallel Resonance

Option C:	Partial Indication
Option D:	Null Deflection

Q2		
(20 marks)	Solve any four out of six	5 marks each
А	How can we minimize errors in Instruments	
В	Explain in detail potentiometric transducer	
С	Explain megger bridge (mega ohmmeter) for I	high resistance measurement with diagram.
D	What are Lissajous patterns ? Give its applicat	tion
E	Compare sensors and transducers	
F	Explain the operation of spectrum analyzer	

Q3.		
(20 Marks)	Solve any Four out of Six	5 marks each
А	Compare between CRO and DSO.	
В	Draw the neat diagram and explain the operation of su	ccessive Approximation type DVM.
С	Explain the operation of Electromagnetic flow meter	
D	Explain Fidelity & Dynamic Error	
E	Describe operating principle of heterodyne wave analy	zer with a neat block diagram.
F	Compare RTD, Thermocouple and Thermistor.	