University of Mumbai

Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 7th January 2021 to 20th January 2021 Program: Electronics Engineering

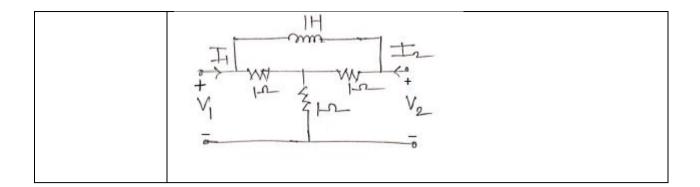
Curriculum Scheme: Rev 2019

Examination: SE Semester III

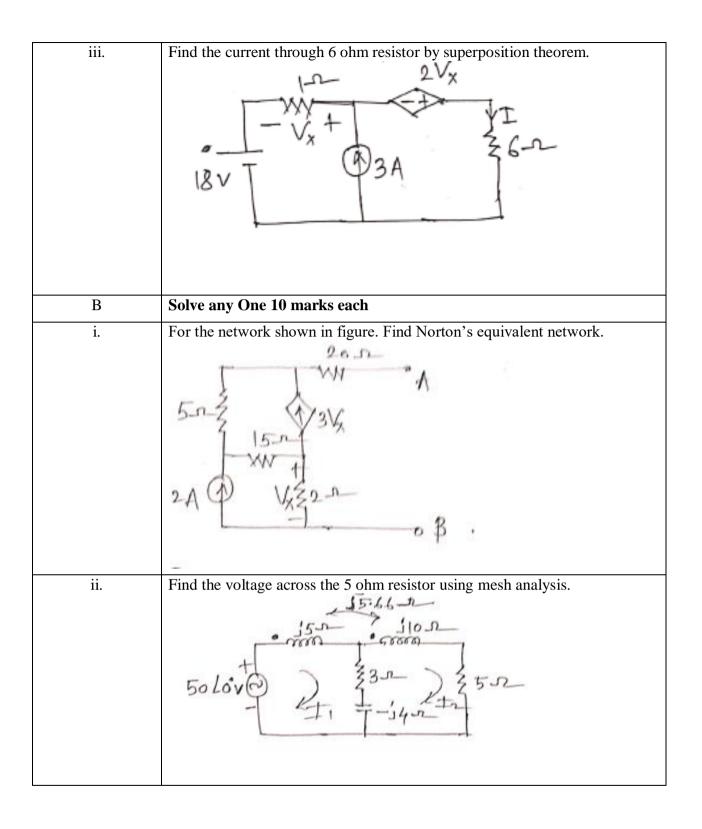
Course Code: ELC304 and Course Name: Electrical Networks Analysis and Synthesis Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which is the condition of symmetry for h parameters
Option A:	h12 = -h21
Option B:	h11h22-h12h21 = 1
Option C:	h11h21-h12h22 = 1
Option D:	h11 = 22
-	
2.	A dependent source
Option A:	May be a current source or a voltage source
Option B:	Is always a voltage source
Option C:	Is always a current source
Option D:	Neither a current source nor a voltage source
3.	Find z parameters. Find z parameters. FI 2-2 3-2 tz 07 FI 4-2 V2 V1 FI 4-2 V2 0.
Option A:	$\begin{bmatrix} 6 & 4 \\ 4 & 7 \end{bmatrix}$
Option B:	$\begin{bmatrix} 4 & 6 \\ 6 & 7 \end{bmatrix}$

Option C:	[4 6]
	$\begin{bmatrix} 4 & 6 \\ 4 & 6 \end{bmatrix}$
Option D:	
4.	Application of Norton's theorem to a circuit yields
Option A:	Equivalent current source and impedance in series
Option B:	Equivalent current source and impedance in parallel
Option C:	Equivalent impedance
Option D:	Equivalent current source
5.	In time domain analysis, the initial condition from $t = -\infty$ to $t = 0^-$ denotes
Option A:	Just after switching condition
Option B:	Steady State Condition
Option C:	After switching condition
Option D:	Just before switching condition
6.	
0.	Which is this function
	$z(s) = \frac{4(s^2+1)(s^2+9)}{s(s^2+4)}$
	$s(s^2+4)$
Option A:	RC Function
Option B:	RL Function
Option C:	LC Function
Option D:	RLC Function
7.	Find equivalent inductance.
	H
	KING THE GH
	+ mon mon that
Option A:	12 H
Option B:	13 H
Option C:	15 H
Option D:	21 H
8.	Find driving point impedance Z(S).


	$\frac{1}{1} \frac{1}{1} \frac{1}$
Option A:	$\frac{2s^2 - 3s + 3}{2s + 1}$
Option B:	$\frac{2s^2+3s+3}{2s+1}$
Option C:	$\frac{2s^2+3s-3}{2s+1}$
Option D:	$\frac{2s^2 - 3s - 3}{2s + 1}$
9.	The necessary and sufficient condition for a rational function F(S)to be the driving point impedance of an RC network is that all poles and zeros should be
Option A:	Simple and lie on the negative real axis in the s plane.
Option B:	Complex and lie in the left half of s plane.
Option C:	Complex and lie in the right half of s plane.
Option D:	Simple and lie on the positive real axis of the s plane.
•	
10.	For the given network find poles and zeros of function I_0/I_1 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
Option A:	Zeros at -0,-2 and poles at 1,1
Option B:	Zeros at 0,-2 and poles at 1,1
Option C:	Zeros at 0,-2 and poles at -1,-1
Option D:	Zeros at 0,2 and poles at -1,-1
11.	Which is the condition of symmetry for ABCD parameters
Option A:	AD-BC = 1
Option B:	B = C
Option C:	AB - CD = 1
Option D:	A = D

12.	Calculate Z(n)
12.	
	2
	\$145 ZION K
	Z3-2 Z(m)
Option A:	3.86 angle 36.03 ⁰ ohm
Option B:	3.86 angle -36.03 ⁰ ohm
Option C:	3.68 angle 36.03 ⁰ ohm
Option D:	3.68 angle -36.03 ⁰ ohm
13.	The concept on which superposition theorem based is
Option A:	Reciprocity
Option B:	Duality
Option C:	Non-linearity
Option D:	Linearity
14.	The cut-off frequency of given circuit is
	0.4 μF 0.4 μF
	L. L
	3 50 mH
	9
	o
Option A:	3.183 kHz
Option B:	795.77 Hz
Option C:	1.591 kHz
Option D:	253.3 Hz
-	
15.	Find the voltage V _{AB}
	B A
	(+ A) 23-2-
	64 7 1
	D- T5V
	USI JULI
	μ – oβ
Option A:	11 I
Option B:	3+6 I
Option D:	6 I+5
Option C: Option D:	31 I
Option D.	
16.	Two identical sections of the network are connected in cascade having ABCD
10.	parameters as
L	


	$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 2.5 & 3 \end{bmatrix},$
	Find Overall ABCD parameters
Option A:	F 80 69]
option III	$\begin{bmatrix} 80 & 69 \\ 25 & 29 \end{bmatrix}$
Option B:	$\begin{bmatrix} 69 & 25 \\ 80 & 29 \end{bmatrix}$
	L _{80 29} J
Option C:	[29 25]
option et	$\begin{bmatrix} 29 & 25 \\ 80 & 69 \end{bmatrix}$
Ontion Di	
Option D:	$\begin{bmatrix} 69 & 80 \\ 25 & 29 \end{bmatrix}$
	-25 29-
17.	Kirchhoff's current law states that
Option A:	Net current flow at the junction is positive
Option B:	Algebraic sum of the currents meeting at the junction is zero
Option C: Option D:	No current can leave the junction without some current entering it Current can leave the junction without some current entering it
Option D.	
18.	At $t = 0^{-}$, No saturation condition has been reached. At $t = 0$, Switching action for
	application of DC source to inductive circuit. At $t = 0^+$, What will be the status of
	inductor?
Option A:	As it is
Option B:	Open Circuit
Option C:	Short Circuit
Option D:	Current Source
19.	In Maximum Power Transfer Theorem Pmax is
Option A:	
	Vth
	2Rth
Option B:	
	Vth^2
	$\overline{2Rth}$
Option C:	
	Vth^2
	$\overline{4Rth}$
Option D:	
	Vth^2
	$\frac{2RL}{2RL}$

20.	For the given ladder network which is not correct.
	+ + + + + + + + + + + + + + + + + + +
Option A:	VC =V2
Option B:	Vb = V2
Option C:	Va = Vb
Option D:	Va = 2sIa + Vb

Q2 (20 Marks)	
А	Solve any Two 5 marks each
i.	Test Whether the given function is positive real function. $F(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}$
ii.	Synthesis in Cauer II $Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$
iii.	Synthesis in Cauer I $Z(s) = \frac{(s^2+1)(s^2+9)}{s(s^2+4)}$
В	Solve any One 10 marks each
i.	Determine Y and ABCD parameters $\overrightarrow{F1}$ $\overrightarrow{2n}$ $\overrightarrow{F2}$ $\overrightarrow{F2}$ $\overrightarrow{F2}$ $\overrightarrow{F2}$ $\overrightarrow{F2}$ $\overrightarrow{F1}$ $\overrightarrow{F1}$ $\overrightarrow{F2}$ $\overrightarrow{F1}$ $\overrightarrow{F1}$ $\overrightarrow{F2}$ $\overrightarrow{F1}$ $\overrightarrow{F1}$ $\overrightarrow{F2}$ $\overrightarrow{F1}$ F
ii.	Find Z- parameters

Q3 (20	
-	
Marks)	
A	Solve any Two 5 marks each
i.	In the network shown in figure the switch is changed from the position 1 to
	the position 2 at $t = 0$, steady state condition having reached before
	switching. Find values of i, di/dt, and d^2i/dt^2 . At $t = 0^+$
	40V $31H$ $20-210(-20-2)$
ii.	For the network shown in figure, find the response $V_0(t)$
	$V_{s}(t) = \frac{1}{2} (os \pm u(t)) (t) (t) (t) (t) (t) (t) (t) (t) (t)$

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examination Commencing from 7th January 2021 to 20th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: ELC303 and Course Name: Digital Logic Circuits

Time: 2 hour _____

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	What is the decimal equivalent of $(11111)_2$.	
Option A:	$(41)_{10}$	
Option B:	$(21)_{10}$	
Option C:	(31) ₁₀	
Option D:	(11)10	
2.	What is the reflected binary code of $(100101)_{2}$.	
Option A:	111000	
Option B:	101010	
Option C:	101111	
Option D:	110111	
3.	Given the two binary numbers x=1010100 and y=1000011 perform the	
	subtraction x-y, using 2's complement.	
Option A:	0010001	
Option B:	1101110	
Option C:	111111	
Option D:	0000111	
4.	How many two-input AND and OR gates are required to realize $Y = AB+CD+E$?	
Option A:	2,2	
Option B:	2,3	
Option C:	3,2	
Option D:	3,3	
5.	If a half adder has A and B as the inputs, then the sum is given by	
Option A:	A EX-NOR B	
Option B:	A OR B	
Option C:	A AND B	
Option D:	A XOR B	
6.	What are the number of select lines required for a 8:1 multiplexer?	
Option A:	1	
Option B:	2	

Option C:	3
Option D:	4
Option D.	
7.	A decoder converts 'n' inputs to number of outputs.
Option A:	2 ⁿ
Option B:	n
Option C:	n ²
Option D:	2n
8.	A basic latch circuit consists of
Option A:	one comparator
Option B:	three adders
Option C:	two inverters
Option D:	one amplifier
9.	A 'n-stage' Johnson counter will circulate a single data bit giving sequence
	of number of states.
Option A:	2n
Option B:	n
Option C:	n+1
Option D:	n ²
10	
10.	A decade counter can be implemented with how many number of flip flops?
Option A:	5
Option B: Option C:	4
Option D:	8
Option D.	
11.	MSI counter IC74163 is
Option A:	4 bit up counter with synchronous preset and clear
Option B:	ripple counter
Option C:	decade counter
Option D:	4 bit up counter with asynchronous preset and clear
	i to to to to to to the prost time true
12.	In a sequential circuit designed as a moore machine, the output depends on
Option A:	present state
Option B:	past state
Option C:	next state
Option D:	external inputs
10	
13.	IC 7490 is a
Option A:	Group A Asynchronous counter IC
Option B:	Group B Asynchronous counter IC
Option C:	Group C Asynchronous counter IC
Option D:	synchronous counter
14.	The internal structure of MSI counter IC 7493 consist of
Option A:	Mod 2 and Mod 6 counter
Option B:	Mod 2 and Mod 8 counter
· ·	

1	od 5 and Mod 8 counter
	od 2 and Mod 5 counter
15. An	n AND gate with 8 input has a fan-out of
Option A: 8	Trace gate with 6 input has a fail out of
Option B: 4	
Option C: 2	
Option D: 1	
16. WI	That does FPGA stand for
Option A: Fie	eld Programming Gate Array
	eld Programmable Gate Array
	rst Program Gate Array
	rst Programmable Gate Array
17. Pro	ogrammable Array Logic has
Option A: a p	programmable AND and fixed OR array
	programmable AND and a programmable OR array
Option C: on	ly a programmable AND array
Option D: on	ly a programmable OR array
18. In	verilog HDL the operator <= is used for
	locking assignment
Option B: No	on-Blocking assignment
	ngle line comment
Option D: Lo	ogical left shift
19. WI	hich type of modeling style is not used in verilog hardware description
	nguage
Option A: Str	ructural
Option B: Da	atatype
	ehavioral
Option D: Da	ata Flow
20. Th	ne Verilog expression for Boolean equation Y=AB+C will be
Option A: ass	sign Y = (A*B) + C
	sign Y = (A.B) + C
Option C: ass	sign $Y = (A^B) C$
Option D: ass	sign $Y = (A\&B) C$

Q2.	
(20 Marks Each)	
A	Solve any Two 5 marks each
i.	Design and implement a half adder using gates.
ii.	State and prove De-Morgan's theorem.
iii.	Compare mealy and moore machines.
В	Solve any One 10 marks each
i.	Design a Mod-10 asynchronous counter using J-K Flip–Flops.
ii.	Write a program using Verilog HDL to implement a 8:1 multiplexer.

Q3. (20 Marks Each)	
А	Solve any Two 5 marks each
i.	Write a short note on Complex Programmable Logic Devices.
ii.	Convert a JK Flip-Flop to T Flip-Flop.
iii.	Write a program for a D flip-flop with asynchronous reset using Verilog
	HDL.
В	Solve any One 10 marks each
i.	Design and implement full subtractor circuit using a 3:8 decoder IC 74138.
ii.	Analyze the given state machine and draw the state diagram.
	$x \longrightarrow K Q \longrightarrow $

University of Mumbai Examination 2020 under Cluster 06 (Lead College :- Vidyavardhini's College of Engineering & Technology)

Examinations Commencing from 7th January 2021 to 20th January 2021

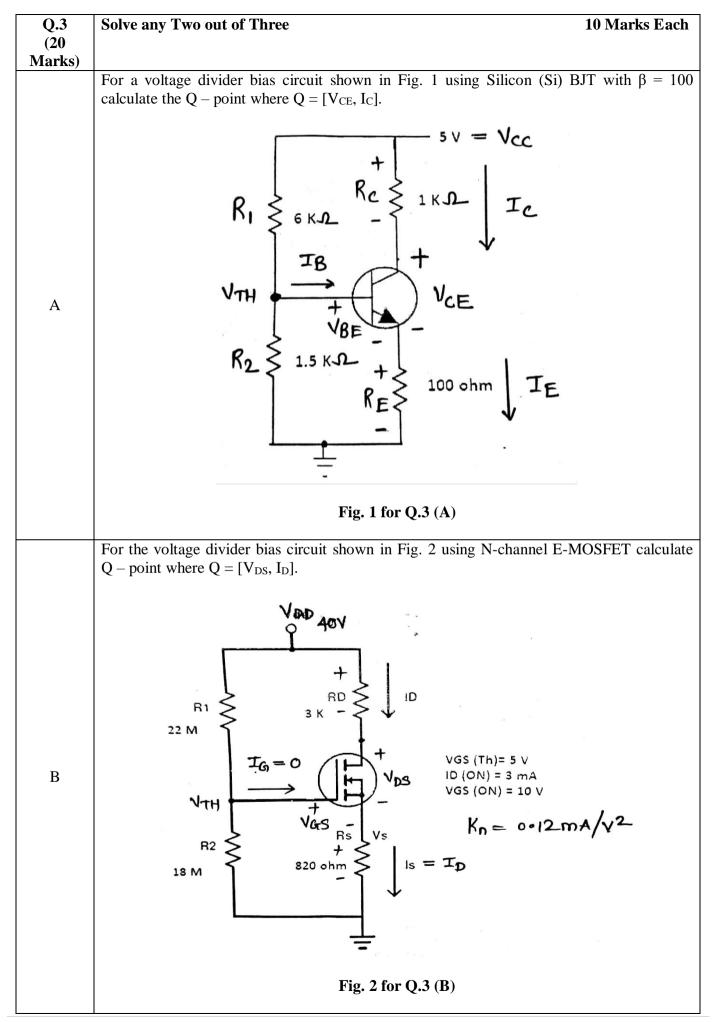
Program: Electronics Engineering

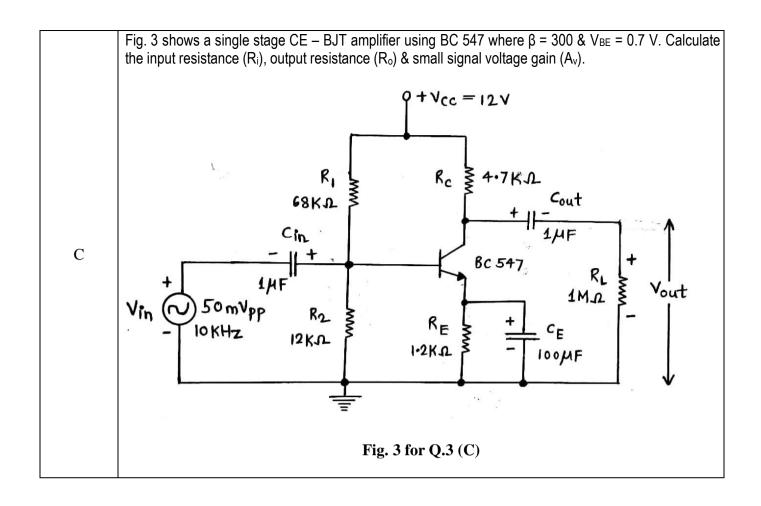
Curriculum Scheme: Rev. 2019

Examination: S.E. Semester III

Course Code: ELC302 and Course Name: Electronic Devices & Circuits - I

Time: 2 hour


Max. Marks: 80


Q.1	Choose the correct option for following questions. All the Questions are compulsory
Q.1	and carry equal marks.
1.	The capacitance in a reverse biased PN junction is called as :-
Option A:	Terminal capacitance
Option B:	Junction capacitance
Option C:	Diffusion capacitance
Option D:	Transition capacitance
2.	In any semiconductor material, the diffusion current is proportional to :-
Option A:	Applied electric field
Option B:	Concentration gradient of charge carriers
Option C:	Square of applied electric field
Option D:	Cube of applied electric field
3.	The phenomenon of Zener breakdown occurs in :-
Option A:	Heavily doped PN junction
Option B:	Lightly doped PN junction
Option C:	Moderately doped PN junction
Option D:	Forward biased PN junction
option 2.	
4.	Forward break-over voltage (V _{FBO}) of a typical silicon diode is approximately :-
Option A:	0.6 V - 0.7 V
Option B:	0.2 V – 0.3 V
Option C:	1.1 V – 1.2 V
Option D:	0.1 V – 0.2 V
•	
F	When a reverse current in Zener diode increases from 20 mA to 30 mA, Zener voltage
5.	changes from 5.6 V to 5.65 V. The Zener resistance (r_z) is given by :-
Option A:	2 Ω
Option B:	3 Ω
Option C:	4 Ω
Option D:	5 Ω
6.	In bipolar junction transistor (BJT) which mode of operation is not commonly used in real
	life applications ?
Option A:	The inverse / reverse mode of operation
Option B:	The cut-off mode of operation
Option C:	The saturation mode of operation
Option D:	The forward active / linear mode of operation
	•

7.	In bipolar junction transistor (BJT) the Early effect is due to :-
Option A:	Decrease in width of the emitter due to reverse bias of collector-to-base junction
Option B:	Decrease in width of the base due to reverse bias of collector-to-base junction
Option C:	Decrease in width of collector due to reverse bias of collector-to-base junction
Option D:	Temperature variations resulting in thermally generated minority carriers
8.	In PNP bipolar junction transistor (BJT), stream of current in active region is due to :-
Option A:	Drift of holes
Option B:	Drift of electrons
Option C:	Diffusion of holes
Option D:	Diffusion of electrons
9.	In a bipolar junction transistor (BJT) if $\beta = 100$ & collector current (I _C) is 30 mA then what
9.	is the value of base current (I_B) ?
Option A:	0.03 mA
Option B:	0.3 mA
Option C:	3 mA
Option D:	300 mA
_	
10.	The field effect transistor (FET) is :-
Option A:	Power controlled device
Option B:	Energy controlled device
Option C:	Current controlled device
Option D:	Voltage controlled device
11.	Pinch-off voltage in field effect transistor (FET) is :-
Option A:	Drain-to-source voltage giving zero (no) drain-to-source current
Option B:	Drain-to-source voltage giving maximum drain-to-source current
Option C:	Gate-to-source voltage giving zero (no) drain-to-source current
Option D:	Gate-to-source voltage giving maximum drain-to-source current
-	
12.	Which of the following statement is not true for any field effect transistor (FET) ?
Option A:	FET has very high input resistance / impedance as compared to BJT
Option B:	FET is a majority carrier operated (unipolar) device
Option C:	FET has excellent operating stability against temperature variations compared to BJT
Option D:	FET has higher transconductance compared to BJT
10	In junction field effect transistor (JFET), the amplification factor (μ) is expressed by which
13.	of the following mathematical expressions ?
Option A:	$\mu = g_m \times r_d$
Option B:	$\mu = g_m + r_d$
Option C:	$\mu = g_m - r_d$
Option D:	$\mu = g_m / r_d$
- <u>-</u>	
	For metal oxide semiconductor field effect transistor (MOSFET), the input impedance or
14.	the input resistance (R_i or Z_i) is :-
Option A:	Less than JFET but more than BJT
Option B:	More than both, JFET & BJT
Option D: Option C:	More than JFET but less than BJT
Option D:	Less than both, JFET & BJT
Option D.	
15.	In MOSFET, which terminal is electrically isolated from the entire device structure ?
13.	

Option B: Drain (D) Option C: Gate (G) Option D: Bulk or Body or Substrate (SS) 16. In design of filters, which of these has the lowest value of ripple factor (γ) ? Option A: Capacitor (C) Filter Option B: Inductor (L) Filter Option C: Inductor & Capacitor (L-C) Filter Option D: C-L-C or 'π' Filter Option A: Capacitor (C) Filter Option A: Capacitor (L-C) Filter Option D: C-L-C or 'π' Filter 17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- Option A: 25 % Option C: 81.2 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option D: It has a bigh output impedance / resistance Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option		
Option C:Gate (G)Option D:Bulk or Body or Substrate (SS)16.In design of filters, which of these has the lowest value of ripple factor (γ) ?Option A:Capacitor (C) FilterOption B:Inductor (L) FilterOption D:C-L-C or ' π ' Filter17.Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :-0ption B:40.6 %Option D:50 %18.Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ?0ption A:It has a low input impedance / resistance0ption C:It has a high output impedance / resistance0ption C:It has a bigh output impedance / resistance0ption C:It has a bigh output impedance / resistance0ption D:10 fibrision0ption D:It has noderate to high voltage gain0ption D:It has moderate to high voltage gain0ption D:Diffusion0ption B:Diffusion0ption C:Biffusion0ption C:Carachiffusion0ption C:Statement20.Which of these diodes does not work in the reverse bias mode of operation ?	Option A:	Source (S)
Option D: Bulk or Body or Substrate (SS) 16. In design of filters, which of these has the lowest value of ripple factor (γ) ? Option A: Capacitor (C) Filter Option D: Inductor & Capacitor (L-C) Filter Option D: C-L-C or 'π' Filter 17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- Option A: 25 % Option B: 40.6 % Option C: 81.2 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option D: It has a low input impedance / resistance Option D: It has a high output impedance / resistance Option D: It has noderate to high voltage gain Option A: Recombination Option A: Recombination Option A: Breadown Option A: Option C: It has a high output impedance / resistance Option A: Option A: It has a low option timpedance / resistance Option A: Recombination Option C: <td></td> <td></td>		
16.In design of filters, which of these has the lowest value of ripple factor (γ) ?Option A:Capacitor (C) FilterOption B:Inductor (L) FilterOption D:C-L-C or ' π ' Filter17.Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :-Option A:25 %Option C:81.2 %Option D:50 %18.Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ?0ption A:It has a low input impedance / resistance0ption D:It has a high output impedance / resistance0ption D:It has a high voltage gain0ption D:It has compare shift in amplified output signal with respect to input signal applied19.Which process of electron-hole pair (EHP) is responsible for emitting of light ?Option D:Diffusion0ption D:Infusion0ption D:Which of these diodes does not work in the reverse bias mode of operation ?0ption A:Light emitting diode (LED)0ption B:Zener diode0ption C:Varactor diode	^	
Option A: Capacitor (C) Filter Option B: Inductor (L) Filter Option D: C-L-C or 'π' Filter 17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- 0ption A: 25 % Option B: 40.6 % Option D: 50 % Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: 11 has a low input impedance / resistance Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option B: 11 has a low input impedance / resistance Option D: 11 has a high output impedance / resistance Option D: 11 has anderate to high voltage gain Option D: 11 roduces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Ionization 0ption D: Ionization 0ption D: Ionization 0ption B: Zener diode 0ption B: <td>Option D:</td> <td>Bulk or Body or Substrate (SS)</td>	Option D:	Bulk or Body or Substrate (SS)
Option A: Capacitor (C) Filter Option B: Inductor (L) Filter Option D: C-L-C or 'π' Filter 17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- 0ption A: 25 % Option B: 40.6 % Option D: 50 % Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: 11 has a low input impedance / resistance Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option B: 11 has a low input impedance / resistance Option D: 11 has a high output impedance / resistance Option D: 11 has anderate to high voltage gain Option D: 11 roduces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Ionization 0ption D: Ionization 0ption D: Ionization 0ption B: Zener diode 0ption B: <td></td> <td></td>		
Option B: Inductor (L) Filter Option D: Inductor & Capacitor (L-C) Filter Option D: C-L-C or 'π' Filter 17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- Option A: 25 % Option D: 50 % Option D: 50 % Option A: 25 % Option C: 81.2 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option D: It has a noderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Iorization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode		
Option C: Inductor & Capacitor (L-C) Filter Option D: C-L-C or '\pi Filter 17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- Option A: 25 % Option B: 40.6 % Option D: 50 % Option D: 50 % It has a low input impedance / resistance Option A: It has a low input impedance / resistance Option D: It has a low onput impedance / resistance Option D: It has a high output impedance / resistance Option D: It has a bigh output impedance / resistance Option D: It has a bigh output impedance / resistance Option D: It has a bigh output impedance / resistance Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C:	Option A:	Capacitor (C) Filter
Option D: C-L-C or 'π' Filter 17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- Option A: 25 % Option B: 40.6 % Option C: 81.2 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option D: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option B: Diffusion Option D: Ionization Option C: Breakdown Option D: Ionization Option B: Diffusion Option C: Breakdown Option D: Ionization Option B: Diffusion Option B: Diffusion Option D: Ionization Option B: Direation Option	Option B:	
17. Maximum operating efficiency of a full wave bridge type rectifier to be considered during the design process is :- Option A: 25 % Option B: 40.6 % Option C: 81.2 % Option D: 50 % Image: State of the statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option D: The state of the statement of the state of the s	Option C:	Inductor & Capacitor (L-C) Filter
the design process is :- 0 Option A: 25 % Option B: 40.6 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option D: It has a high output impedance / resistance Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option B: Diffusion Option D: Breakdown Option D: It produces does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode	Option D:	C-L-C or ' π ' Filter
the design process is :- 0 Option A: 25 % Option B: 40.6 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option D: It has a high output impedance / resistance Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option B: Diffusion Option D: Breakdown Option D: It produces does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode		
Option A:25 %Option B:40.6 %Option C:81.2 %Option D:50 %18.Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ?Option A:It has a low input impedance / resistanceOption B:It has a high output impedance / resistanceOption C:It has moderate to high voltage gainOption D:It produces a phase shift in amplified output signal with respect to input signal applied19.Which process of electron-hole pair (EHP) is responsible for emitting of light ?Option A:RecombinationOption D:IffusionOption D:Ionization20.Which of these diodes does not work in the reverse bias mode of operation ?Option A:Light emitting diode (LED)Option B:Zener diodeOption C:Varactor diode	17.	Maximum operating efficiency of a full wave bridge type rectifier to be considered during
Option B: 40.6 % Option C: 81.2 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option D: It has a high output impedance / resistance Option D: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Diffusion Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode		the design process is :-
Option C: 81.2 % Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option D: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option B: Diffusion Option D: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option A:	25 %
Option D: 50 % 18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option D: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option B: Diffusion Option D: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option B:	40.6 %
18. Which of these statements in not true for any type of BJT common base (CB) configuration amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option C: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option B: Diffusion Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option C:	81.2 %
18. amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option C: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Diffusion Option C: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option D:	50 %
18. amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option C: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Diffusion Option C: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode		
amplifier ? Option A: It has a low input impedance / resistance Option B: It has a high output impedance / resistance Option C: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Diffusion Option D: Invizotion 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	10	Which of these statements in not true for any type of BJT common base (CB) configuration
Option B:It has a high output impedance / resistanceOption C:It has moderate to high voltage gainOption D:It produces a phase shift in amplified output signal with respect to input signal applied19.Which process of electron-hole pair (EHP) is responsible for emitting of light ?Option A:RecombinationOption B:DiffusionOption C:BreakdownOption D:Ionization20.Which of these diodes does not work in the reverse bias mode of operation ?Option A:Light emitting diode (LED)Option B:Zener diodeOption C:Varactor diode	18.	amplifier ?
Option C: It has moderate to high voltage gain Option D: It produces a phase shift in amplified output signal with respect to input signal applied 19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option D: Diffusion Option D: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option A:	It has a low input impedance / resistance
Option D:It produces a phase shift in amplified output signal with respect to input signal applied19.Which process of electron-hole pair (EHP) is responsible for emitting of light ?Option A:RecombinationOption B:DiffusionOption C:BreakdownOption D:Ionization20.Which of these diodes does not work in the reverse bias mode of operation ?Option A:Light emitting diode (LED)Option B:Zener diodeOption C:Varactor diode	Option B:	It has a high output impedance / resistance
19. Which process of electron-hole pair (EHP) is responsible for emitting of light ? Option A: Recombination Option B: Diffusion Option C: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option C:	It has moderate to high voltage gain
Option A: Recombination Option B: Diffusion Option C: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option D:	It produces a phase shift in amplified output signal with respect to input signal applied
Option A: Recombination Option B: Diffusion Option C: Breakdown Option D: Ionization 20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode		
Option B:DiffusionOption C:BreakdownOption D:Ionization20.Which of these diodes does not work in the reverse bias mode of operation ?20.Which of these diodes does not work in the reverse bias mode of operation ?Option A:Light emitting diode (LED)Option B:Zener diodeOption C:Varactor diode	19.	Which process of electron-hole pair (EHP) is responsible for emitting of light ?
Option C:BreakdownOption D:Ionization20.Which of these diodes does not work in the reverse bias mode of operation ?Option A:Light emitting diode (LED)Option B:Zener diodeOption C:Varactor diode	Option A:	Recombination
Option C:BreakdownOption D:Ionization20.Which of these diodes does not work in the reverse bias mode of operation ?Option A:Light emitting diode (LED)Option B:Zener diodeOption C:Varactor diode	Option B:	Diffusion
20. Which of these diodes does not work in the reverse bias mode of operation ? Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode		Breakdown
Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode	Option D:	Ionization
Option A: Light emitting diode (LED) Option B: Zener diode Option C: Varactor diode		
Option B: Zener diode Option C: Varactor diode	20.	Which of these diodes does not work in the reverse bias mode of operation ?
Option B:Zener diodeOption C:Varactor diode	Option A:	Light emitting diode (LED)
Option C: Varactor diode		Zener diode
*		Varactor diode
	Option D:	Photo diode

Q.2 (20 Marks)	Solve any Four out of Six 05 Marks Each
A	Explain the effects of temperature on the $V - I$ characteristics of PN junction diode with a neat sketch / diagram & appropriate mathematical expressions.
В	Describe forward bias $V - I$ characteristics of PN junction diode with neat labeled diagram & appropriate sketch.
С	Explain working of Center Tap type full wave rectifier with help of circuit diagram.
D	Discuss the working / operation of dual end clipper circuit with a neat labeled diagram showing appropriate waveforms of the resulting clipped output voltage.
Е	Explain the operation of Zener diode as a voltage regulator with a neat sketch for condition where supply / source voltage remains constant but load resistor varies.
F	With a neat sketch, describe the operating principle & the construction of the light emitting diode (LED).

University of Mumbai

Examinations Commencing from 7th January 2021 to 20th January 2021 Program: BE Electronics Engineering Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III Course Code: ELC301 and Course Name: Engineering Mathematics III

Time: 2 hour

Max. Marks: 80

Note : Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find Laplace transform of $f(t) = 1$, $0 < t < 5$; $f(t) = 0$, $t > 0$
Option A:	$1-e^{-5s}$
Option B:	$\frac{1}{s}e^{-5s}$
Option C:	$\frac{s}{\frac{1}{s}}$
Option D:	$\frac{1+e^{-5s}}{s}$
	S
2.	If $L[f(t)] = log\left(\frac{s+3}{s+1}\right)$, find $L[f(2t)]$
Option A:	$2 \log\left(\frac{s+3}{s+1}\right)$
Option B:	$2 \log\left(\frac{s+6}{s+2}\right)$
Option C:	$\frac{1}{2}\log\left(\frac{s+3}{s+1}\right)$
Option D:	$\frac{1}{2}\log\left(\frac{s+6}{s+1}\right)$
3.	$\mathbf{E} = 1 \cdot \mathbf{I} [1 - 3 \mathbf{I} - 1 + 1]$
	Find $L[te^{-3t}sint]$
Option A:	$\frac{2s-6}{(s^2-6s+10)^2}$
Option B:	$\frac{2s+6}{(s^2+6s+10)^2}$
Option C:	$\frac{1}{(s+3)^2+1}$
Option D:	1
1	$\overline{(s^2-6s+10)^2}$
4.	Find $L\left[\int_0^t u \sin 3u du\right]$
Option A:	$\frac{2}{(s^2+1)^2}$
Option B:	$\overline{(s^2+3)^2}$
Option C:	$\frac{6}{(s^2+9)^2}$

Option D:	25
option D.	$(s^2+1)^2$
5.	.[245]
5.	$L^{-1}\left[\frac{s+5}{s^2-25}\right] = ?$
Option A:	cos5t + 5 sin5t
Option B:	cosh5t + 5 sinh5t
Option C:	cosh5t + sinh5t
Option D:	cosht + 5 sinht
6.	Find $L^{-1}\left[\frac{s-2}{s^2-4s+13}\right]$
Option A:	
	$e^{2t}\frac{\sin 3t}{3}$
Option B:	$e^{-2t} \frac{\sin 3t}{3}$
Ortion Ci	3
Option C:	$e^{2t}sin3t$
Option D:	$e^{2t}cos3t$
7.	In Fourier series of $f(x) = x\cos x$ in $(-\pi, \pi)$. The value of a_n is
Option A:	0
Option B:	$\left \frac{-1}{2}\right $
Option C:	$\frac{(-1)^n}{2}$
Option D:	$ \begin{array}{c} \overline{n^2 - 1} \\ 1 \end{array} $
-	$\overline{n^2-1}$
8.	$(\cos x) - \pi < x < 0$
0.	$f(x) = \begin{cases} cosx, & -\pi < x < 0\\ -cosx, & 0 < x < \pi \end{cases}$ is
Option A:	Both even and odd function
Option B:	neither even nor odd
Option C:	odd function
Option D:	Even function
0	
9.	The Fourier series for f(x) in (0,2 π) is f(x) = $\frac{\pi}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$.
	Find the value of $\frac{1}{2\pi} \int_0^{2\pi} [f(x)]^2 dx$
Option A:	
Option A.	$\frac{\pi^3}{4} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^4}$
Ontion D.	
Option B:	$\frac{\pi^2}{4} + \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^4}$
	$4 2\pi^2 {\smile} n^{-1} n^4$
Option C:	$\frac{\pi^3}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^4}$
	$\frac{1}{2} - \frac{1}{\pi} \Delta n = 1 \frac{1}{n^4}$
Option D:	0
10.	A function f(t) is periodic with period 2π if
· · · · · · · · · · · · · · · · · · ·	

Option A:	$f(t+2\pi) = 0$
Option B:	$f(t+2\pi) = 0$ $f(t+2\pi) = 2\pi$
Option C:	
Option D:	$f(t+2\pi) = f(2\pi)$
Option D.	$f(t+2\pi) = f(t)$
11.	Which of the following functions is NOT englytic
Option A:	Which of the following functions is NOT analytic Sinhz
Option B:	Cosz
Option D:	
Option D:	\overline{Z} $z^2 + z$
Option D.	
12.	For $f(z) = u + iv$ analytic, which of the following statement is
	correct
Option A:	f(z) may satisfy Cauchy-Riemann equation.
Option B:	f(z) is constant function
Option C:	f(z) =0
Option D:	u, v both are harmonic
13.	Find k such that $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic
Option A:	K=1
Option B:	K=-1
Option C:	K=0
Option D:	K=2
14.	Find the characteristic roots of matrix A ,
	[3 -1 1]
	Where $A = \begin{bmatrix} -1 & 5 & -1 \\ 1 & 1 & 2 \end{bmatrix}$
Option A:	$\lambda = 1, 2, 3$
Option B:	$\lambda = 1, 2, 3$ $\lambda = 1, 1, -2$
Option C:	$\lambda = 2, 3, 6$
Option D:	$\lambda = -2, -3, -6$
15.	$\lambda = 5$ is one of the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Find the eigenvector corresponding
	to eigenvalue $\lambda = 5$ is
Option A:	$[1 - 1 \ 0]'$
Option B:	[1 1 1]'
Option C:	
Option D:	[1 0 - 1]'

16.	If A = $\begin{bmatrix} 1 & 2 & 8 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$ Find Eigen Values of $A^2 + 3A + 2A^{-1} + I$
Option A:	7,-3,12
Option B:	6,-4,11
Option C:	1,-1,2
Option D:	7,-3,15
17.	If the matrix A has eigen value 1,1,5 then algebraic multiplicity of A for $\lambda = 1$ is
Option A:	-1
Option B:	0
Option C:	1
Option D:	2
18.	The divergence and curl of $\bar{a} = 2i - 3j + k$ is
Option A:	div $\bar{a}=0$, curl $\bar{a}=5$
Option B:	div $\bar{a}=2$, curl $\bar{a}=0$
Option C:	div $\bar{a}=3$, curl $\bar{a}=3$
Option D:	div $\bar{a}=0$, curl $\bar{a}=0$
19.	Find the value of a if $\overline{F} = (x - 2z)i + (y - 5x)j + (az + 2x)k$ is solenoidal
Option A:	<i>a</i> = 2
Option B:	a = -2
Option C:	a = -4
Option D:	a = 4
20	
20.	Evaluate $\int_{C} y dx + x dy$ along $y = x^2$ from A(0,0) to B(1,1)
Option A:	0
Option B:	2xy
Option C:	-1
Option D:	1

Q2.	Solve any Four out of Six5 marks each
(20 Marks Each)	
А	Find $L\left[e^{-t}\int_0^t e^u \cosh u\right]$
В	$L^{-1}\left[\log\left(1+\frac{4}{s^2}\right)\right]s$
С	Obtain the Fourier series for e^{-x} in (0,2 π)
D	Find the analytic function $f(z)$ whose imaginary part is $e^{-x}(ysiny + xcosy)$
Е	Show that $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence find A^{-1}

F	Evaluate by using Green's theorem $\int_C (x^2 - y)dx + (2y^2 + x)dy$, where C
_	is the closed region bounded by $y = 4$ and $y = x^2$

Q3.	Solve any Four out of Six5 marks each
(20 Marks Each)	
А	Evaluate $\int_0^\infty e^{-3t} \left(\frac{\sinh t \sin t}{t}\right) dt$
В	Find $L^{-1}\left[\frac{S}{(s^2+4s+13)^2}\right]$
С	Obtain the half range Fourier sine series expansion for $f(x) = (x - x^2)$ in (0,2)
D	Obtain the orthogonal trajectories for the family of curves $e^{-x} \cos y = C$.
Е	Check whether the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ is diagonalizable
F	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both irrotational and solenoidal.