Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester III

Course Code: ELX302 Course Name: Electronics Devices and Circuits-I

Time: 1 hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

r					
Q1.	Diffused impurities with five valence electrons are called				
Option A:	acceptor atoms				
Option B:	donor atoms				
Option C:	neutral atoms				
Option D:	positive ions				
Q2.	The general characteristics of a semiconductor diode can be defined by the				
	equation.				
Option A:	$I_D = I_s (e^{V_D/nV_T} - 1)$				
Option B:	$I_D = I_s (e^{V_D/nV_T} + 1)$				
Option C:	$I_D = (e^{V_D/nV_T} - 1)$				
_					
Option D:	$I_D = I_s (e^{V_D/V_T} - 1)$				
-					
Q3.	Name the following circuit:				
	+ c $+$ $+$				
	$v_i + \mathbf{f} \mathbf{k}_R + \mathbf{v}_o$				
	-				
Option A:	Biased positive clamper network				
Option B:	Biased negative clamper network				
Option C:	Biased negative clipper network				
Option D:	Biased positive clipper network				
.					
Q4.	The Fermi level lies close to the in n-type material and it is close to -				
	in p-type material.				
Option A:	conduction band, valence band				
Option B:	valence band, conduction band				
L					

Option C:	conduction band, conduction band					
Option D:	valence band, valence band					
Q5.	Statement 1: The doping of the sandwiched layer is considerably less than that of the					
	outer layers in BJT.					
	Statement 2: The outer layers have widths much greater than the sandwiched <i>p</i> - or <i>n</i> -					
	type material.					
	Statement 3: The emitter layer is lightly doped, the base lightly doped, and the					
	collector is heavily doped					
Option A:	Only statement 1 and 2 is correct					
Option B:	Only statement 2 and 3 is correct					
Option C:	Only statement 1 and 3 is correct					
Option D:	All statements are correct					
*						
Q6.	Which statement is false for transistor					
Option A:	In PNP transistor $IE = IB + IC$					
Ĩ						
Option B:	In NPN transistor direction of Emitter current is into emitter terminal					
Option C:	In NPN transistor $IE = IB + IC$					
Option D:	In PNP transistor direction of Emitter current is into emitter terminal					
Q7.	In small signal BJT amplifier the magnitude of I_B is in, and I_C is in					
-						
Option A:	Milliamperes, microamperes					
Option B:	Microamperes, microamperes					
Option C:	Microamperes, Milliamperes					
Option D:	Amperes, Milliamperes					
Q8.	In emitter biased if external resistance is fixed and VCC Is varied, the Q point shifts					
	towards					
Option A:	cutoff					
Option B:	left					
Option C:	right					
Option D:	saturation					
Q9.	BJT transistor amplifiers are referred to as					
Option A:	current-controlled current source.					
Option B:	voltage-controlled current source					
Option C:	voltage-controlled voltage source					
Option D:	current-controlled voltage source.					
Q10.	Which statement is false					
Option A:	In common collector configuration voltage gain is one					
	In common collector configuration input impedance is low					
Option B:						
Option B: Option C:	In common collector configuration input impedance is low In common base configuration current gain is one					

Q11.	The is a unipolar device depending solely on either electron or hole
C	conduction.
Option A:	BJT
Option B:	FET
Option C:	Capacitor
Option D:	Inductor
1	
Q12.	The relationship between I_D and V_{GS} is defined by Shockley's equation for JFET:
Option A:	$I_D = (1 - \frac{V_{GS}}{V_P})^2$
Option B:	$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$
Option C:	$I_D = I_{DSS} (1 + \frac{V_{GS}}{V_P})^2$
Option D:	$I_D = (1 - \frac{V_{GS}}{V_P})^2$ $I_D = I_{DSS}(1 - \frac{V_{GS}}{V_P})^2$ $I_D = I_{DSS}(1 + \frac{V_{GS}}{V_P})^2$ $I_D = I_{DSS}(1 - \frac{V_{DS}}{V_P})^2$
Q13.	For E-MOSFETs, the relationship between output current and controlling voltage is defined by
Option A:	$I_{D} = (V_{GS} - V_{GS(Th)})^{2}$ $I_{D} = k(V_{GS} - V_{SB})^{2}$
Option B:	$I_D = k(V_{GS} - V_{SB})^2$
Option C:	$I_D = k(V_{GS} - V_{DS})^2$
Option D:	$I_D = k(V_{GS} - V_{GS(Th)})^2$
Q14.	Name the following circuit: R_1 R_2 R_2 R_2 R_3 R_2 R_3
Option A:	Voltage-divider biasing arrangement for an n-channel enhancement MOSFET
Option B:	Voltage-divider biasing arrangement for an p-channel enhancement MOSFET
Option C:	Voltage-divider biasing arrangement for an p-channel depletion MOSFET
Option D:	Voltage-divider biasing arrangement for an n-channel depletion MOSFET

Q15.	The insulating layer of SiO2 in the MOSFET construction accounts for the very					
-	desirable high of the device.					
Option A:	input impedance					
Option B:	output impedance					
Option C:	voltage gain					
Option D:	current gain					
Q16.	is also called as a breakdown diode operated with reverse breakdown					
	voltage.					
Option A:	Zener diode					
Option B:	Tunnel diode					
Option C:	Varactor diode					
Option D:	Photodiode					
Q17.	Which is not the category of optoelectronic devices?					
Option A:	Light Emitting Diode					
Option B:	Photodiode					
Option C:	Solar Cell					
Option D:	Varactor diode					
Q18.	Reverse breakdown voltage of conventional diode and LED is					
	respectively					
Option A:	Very low and high					
Option B:	High and very high					
Option C:	Low and very low					
Option D:	High and very low					
Q19.	Peak inverse voltage in Schottky diode is					
Option A:	High					
Option B:	Low					
Option C:	Very High					
Option D:	Moderate					
Q20.	In a center tap full wave rectifier, if Vm is the peak voltage between center tap and					
	one end of the secondary, the maximum voltage coming across the reverse bias diode					
	is					
Option A:	Vm					
Option B:	Vm/2					
Option C:	2 Vm					
Option D:	$Vm/\sqrt{2}$					
Sphon D.						
Q21.	If the line frequency is 50 Hz, the output frequency of bridge rectifier is					
Option A:	25 Hz					
Option B:	50 Hz					
Option C:	100 Hz					

Option D:	200 Hz			
1				
Q22.	The ripple factor of a LC filter			
Option A:	Increases with the load current			
Option B:	Increases with the load resistance			
Option C:	has the lowest value			
Option D:	remains constant with the load current			
Q23.	The reverse breakdown voltage with temperature in case PN- junction			
	diode			
Option A:	decreases			
Option B:	increases			
Option C:	does not change			
Option D:	increases as well as decreases			
Q24.	is a required step in order to calculate Zo.			
Option A:	Setting IG equal to zero			
Option B:	Setting Vi equal to zero			
Option C:	Setting ID equal to IDSS			
Option D:	Setting ID equal to IDSS/4			
Q25.	Which is the Correct sequence of design steps for RC coupled CS amplifier			
	I: Determine drain resistance, II: Calculate drain current,			
	III: Determine Q point, IV: Calculate VGS, V : Calculate gm			
Option A:	IV,II,III,I,V			
Option B:	II, IV,V, I, III			
Option C:	III,II,IV,V,I			
Option D:	III,IV,II,I,V			

University of Mumbai Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester III

Course Code: ELX303 Course Name: Digital Circuit Design

Time: 1 hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

Q1.	The binary equivalent of Decimal(53) ₁₀ is			
Option A:	(101011) ₂			
Option B:	(110101)2			
Option C:	(101010)2			
Option D:	(111011) ₂			
Q2.	Find 2's complement of $(1100010)_2$			
Option A:	(0011101) ₂			
Option B:	(1100011) ₂			
Option C:	(0011110)2			
Option D:	(0011111)2			
Q3.	The decimal equivalent of hexadecimal no (3A) is			
Option A:	34			
Option B:	40			
Option C:	57			
Option D:	58			
Q4.	The logic expression A'B +AB' can be implemented by giving the inputs A and B to			
	a two input			
Option A:	NOR gate			
Option B:	NAND gate			
Option C:	EX-OR gate			
Option D:	EX-NOR gate			
0.5				
Q5.	Which of the following is not weighted code?			
Option A:	Octal			
Option B:	Hexadecimal			
Option C:	Gray			
Option D:	Natural Binary			

Q6.	The simplified form of the Boolean expression $(X + Y) (X + Z)$ is					
Option A:	X + Y + Z					
Option B:	XY + YZ					
Option C:	X + YZ					
Option D:	XZ+Y					
Q7.	To realize Half adder the gates required are					
Option A:	One AND gate and one EX-OR gate					
Option B:	One NAND gate and one EX-OR gate					
Option C:	One OR gate and one EX-NOR gate					
Option D:	One NOR gate and one EX-NOR gate					
Q8.	A multiplexer with 4 select lines is a					
Option A:	4:1 multiplexer					
Option B:	8:1 multiplexer					
Option C:	16:1 multiplexer					
Option D:	32:1 multiplexer					
•						
Q9.	To realize full subtractor using active low decoder we need					
Option A:	One 1:8 active low decoder and two NAND gates with 4 inputs.					
Option B:	Two 1:8 active low decoder and two NAND gates with 4 inputs.					
Option C:	Two 1:4 active low decoder and two OR gates with 4 inputs.					
Option D:	One 1:8 active low decoder and two OR gates with 4 inputs.					
010	The number of colorst lines for 1.16 estive high door don one					
Q10.	The number of select lines for 1:16 active high decoder are 2					
Option A:	3					
Option B:						
Option C: Option D:	4 5					
Option D.						
Q11.	How many AND, OR and EX-OR gates are required for the configuration of full adder?					
Option A:	1, 2, 2					
Option B:	2, 1, 2					
Option C:	3, 1, 2					
Option D:	4, 0, 1					
´						
Q12.	How many inputs will a decimal-to-BCD encoder have?					
Option A:	4					
Option B:	8					
Option C:	10					
Option D:	16					
<u> </u>						

University of Mumbai Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Q13.	Number of NAND gates required to realize OR gate are					
Option A:	2					
Option B:	3					
Option C:	4					
Option D:	5					
Option D.						
Q14.	Identify Static 0 hazard					
Option A:						
Option B:						
Option C:						
Option D:						
Q15.	The logic family which has highest noise margin is					
Option A:	TTL					
Option B:	ECL					
Option D: Option C:	MOS					
Option D:	CMOS					
Option D.						
Q16.	TTL logic family gives inbuilt Noise margin of					
Option A:	0.2V					
Option B:	0.1V					
Option D: Option C:	0.5V					
Option D:	0.4V					
Q17.	The propagation delay of standard TTL family is					
Option A:	10 nsec					
Option B:	100 nsec					
Option C:	200 nsec					
Option D:	500 nsec					
Q18.	If clock frequency of mod 16 up ripple counter is 2KHz then the square wave available from MSB flip flop will be					
Option A:	1KHz					
Option B:	500Hz					
Option C:	250Hz					
Option D:	125Hz					
Q19.	Find the correct statement related to Reset, Preset pins of JKMS flip flop IC 7476.					

Option A:	Both are active low					
Option B:	Both are active high					
Option C:	Reset is active low and Preset is active high					
Option D:	Reset is active high and Preset is active low					
Q20.	The characteristic equation of a T flip flop is					
Option A:	$Q_{N+1}=Q_N$					
Option B:	$Q_{N+1}=T Q_N'+T'Q_N$					
Option C:	$Q_{N+1}=Q_N$					
Option D:	$Q_{N+1} = T'Q_N' + Q_NT$					
Q21.	Convert JK flip-flop to Toggle switch the condition is					
Option A:	J=0, K=0					
Option B:	J=1, K=1					
Option C:	J=0, K=1					
Option D:	J=1, K=0					
Q22.	If propagation delay of JKMS flip flop is 40nsec then the time required to get output of mod 16 up synchronous counter after application of clock pulse is					
Option A:	40nsec					
Option B:	80nsec					
Option C:	120nsec					
Option D:	160nsec					
Q23.	The number of D Flip-Flops required for mod 10 Johnson counter are					
Option A:	4					
Option A: Option B:	5					
Option D:	6					
Option D:	6 10					
Option D.						
Q24.	The minimum number of flip flops required for mod 12 ripple counter is					
Option A:	3					
Option B:	4					
Option C:	6					
Option D:	12					
Spinon 21						
1						

University of Mumbai Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Q25.	The given excitation table shows conversion of B flip flop into A flipflop. Identify it.					
		Input	Present	Next	Flip flop input	
		A	state	state	В	
		0	0	0	0	
		0	1	1	1	
		1	0	1	1	
		1	1	0	0	
Option A:	Conversion from D to T					
Option B:	Conversion from SR to D					
Option C:	Conversion from T to D					
Option D:	Conversion from D to JK					

Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester III

Course Code: ELX304 Course Name: Electrical Network Analysis & Synthesis

Time: 1 hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

Q1.	According to Kirchhoff's voltage law, the algebraic sum of all IR drops and e.m.fs. in				
Q1.	any closed loop of a network is always				
Option A:	Negative				
Option B:	Positive				
Option C:	Determined by battery e.m.fs.				
Option D:	Zero				
Q2.	A dependent source				
Option A:	May be a current source or a voltage source				
Option B:	Is always a voltage source				
Option C:	Is always a current source				
Option D:	Neither a current source nor a voltage source				
Q3.	For determining the polarity of a voltage drop across a resistor, it is necessary to				
Q3.	know the				
Option A:	Value of resistor				
Option B:	Value of current				
Option C:	Direction of current flowing through the resistor				
Option D:	Value of e.m.f. in the circuit				
	Maximum power output is obtained from a network when the load resistance is equal				
Q4.	the output resistance of the network as seen from the terminals of the load. The above				
	statement is associated with				
Option A:	Maximum Power Transfer Theorem				
Option B:	Thevenin's Theorem				
Option C:	Superposition Theorem				
Option D:	Milliman's Theorem				
Q5.	Norton's equivalent resistance is the as Thevenin's equivalent resistance				
Option A:	Not same				
Option B:	Same				
Option C:	Less than				

Option D:	More than						
option D.							
Q6.	The emf induced in a coil due to the changing current in the neighboring coil is called						
Option A:	Self Induced emf						
Option B:	Self Inducatnce						
Option C:	Mutual Inductance						
Option D:	Mutually Induced emf						
Q7.	The coupling between any two magnetically coupled coils is said to be ideal, if, the coefficient of coupling is						
Option A:	1						
Option B:	0.1						
Option C:	0						
Option D:	2						
Q8.	In time domain analysis, the initial condition from $t = -\infty$ to $t = 0^{-}$ denotes						
Option A:	Just after switching condition						
Option B:	Just before switching condition						
Option C:	After switching condition						
Option D:	Steady State Condition						
Q9.	Sometimes conditions at $t = \infty$ are used in evaluation of						
Option A:	Initial Condition						
Option B:	Scalar Constants						
Option C:	Arbitrary Constants						
Option D:	Vector Constants						
Q10.	In Transient Time Response, to differentiate between time immediately before & immediately after switching, the signs						
Option A:	1 & 2 are used						
Option B:	3 & 4 are used						
Option C:	0 & - are used						
Option D:	- & + are used						
Q11.	With zero initial condition at $t = 0^+$, acts as an open circuit						
Option A:	$\begin{array}{c} \text{with zero initial condition at } t = 0^{\circ}, \underline{\qquad} \text{ acts as an open circuit} \\ \text{Resistor} \end{array}$						
Option B:	Capacitor						
Option C:	Inductor						
Option D:	Both Capacitor & Inductor						
Q12.	For synthesizing the transfer function in Pole-Zero Plot, if degree of Numerator is not						
-	equal to degree of Denominator than						
Option A:	we add a pole/zero towards infinity in LHS of s-plane						
Option B:	we add a pole/zero towards infinity in RHS of s-plane						
Option C:	we add a pole/zero towards infinity in LHS & RHS of s-plane						

Option D:	we add a pole/zero towards Zero in LHS of s-plane
	In Pole-Zero Plot, the transfer function $F(S) = H \times (Zero Factors/Pole Factors)$,
Q13.	where H represents
Option A:	Complex Frequency
Option B:	Constant or Scalar Vector
Option C:	Variable Frequency
Option D:	Poles
Q14.	If all the poles & zeros are lying on negative s-plane (LHS of s-plane) than, the
-	transfer function is
Option A:	Perfectly Stable
Option B:	Unstable
Option C:	Marginally Stable
Option D:	Infinite
015	With the descent of the second difference (
Q15.	Which is the correct condition of symmetry observed in z-parameters?
Option A:	Z11 = Z12
Option B:	Z11 = Z22
Option C:	$Z_{12} = Z_{22}$
Option D:	Z12 = Z21
Q16.	For a T-Network the value of Za is represented as
Option A:	Za = Z11 - Z12 = Z11 - Z21
Option B:	Za = Z21 - Z22 = Z21 - Z11
Option C:	Za = Z11 - Z22
Option D:	Za = Z22 - Z21
Q17.	Which among the following represents the precise condition of reciprocity for
'	transmission parameters?
Option A:	AB - CD = 1
Option B:	AD - BC = 1
Option C:	AC - BD = 1
Option D:	AC - BD = 0
	If the true works are accounted in some de some finner the method with working
018	If the two ports are connected in cascade configuration, then which arithmetic operation should be performed between the individual transmission parameters in
Q18.	order to determine overall transmission parameters?
Option A:	Addition
Option B:	Subtraction
Option D:	Multiplication
Option D:	Division
Sphon D.	
Q19.	If $P(S) = P1(S) * P2(S)$ than, $P(S)$ is said to be Hurwitz Polynomial, if
Option A:	P1(S) is Hurwitz Polynomial
<u> </u>	
Option B:	P2(S) is Hurwitz Polynomial

Option D:	P1(S) & P2(S) both are Hurwitz Polynomial
Q20.	In Routh Array Method, the given Polynomial P(S) is said to be Hurwitz Polynomial, if, all the elements in first column are
Option A:	Positive & Non-Zero
Option B:	Positive & Zero
Option C:	Zero
Option D:	Negative
Q21.	To realize the Foster form of Impedance Function Z(S)
Option A:	The degree of numerator > The degree of denominator
Option B:	The degree of numerator < The degree of denominator
Option C:	The degree of numerator = The degree of denominator
Option D:	The degree of numerator \leq The degree of denominator
Q22.	The Cauer - II form is obtained by
Option A:	Continued Fraction Expansion about the pole at infinity
Option B:	Partial Fraction Expansion of the admittance function Y(S)
Option C:	Continued Fraction Expansion about the pole at origin
Option D:	Partial Fraction Expansion of the impedance function Z(S)
Q23.	A low-pass filter (LPF) is a filter that passes signals with a frequency than a selected cutoff frequency
Option A:	Higher
Option B:	Marginal
Option D:	Lower
Option D:	Critical
option D.	
Q24.	The attenuation constant α decreases gradually to zero at the cut-off frequency and remains at through the pass band
Option A:	zero
Option B:	π
Option C:	-π
Option D:	1
Q25.	A bandpass filter (BPF) is a device that passes frequencies a
-	certain range and rejects frequencies outside that range
Option A:	above
Option B:	below
Option C:	above & below
Option D:	within

Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester III

Course Code: ELX305 Course Name: Electronics Instruments and Measurements

Time: 1 hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

Q1.	Accuracy of a measuring instrument indicates the
Option A:	Closeness of the output reading to the true value
Option B:	Ratio of output value to the input value
Option C:	Change in output with each change in input
Option D:	Degree of freedom from random errors
_	
Q2.	Which of the following are NOT dynamic characteristics of measurement systems?
Option A:	Speed of response
Option B:	Fidelity
Option C:	Linearity
Option D:	Lag
Q3.	Which type of error occurs after taking all precautions during measurement and we cannot avoid it?
Option A:	Systematic Error
Option B:	Random Error
Option C:	Instrument Error
Option D:	Observation Error
Q4.	Under balanced condition, the current flowing through the detector is equal to
Option A:	1
Option B:	0
Option C:	Sum of the currents flowing in the adjacent arms
Option D:	Difference between the current flowing in the adjacent arms
Q5.	For the measurement of unknown inductance in terms of Known capacitance, suitable AC bridge's are
Option A:	Maxwell and Wein
Option R:	Maxwell and Kelvin
Option D: Option C:	Maxwell and Schering
Option D:	Maxwell and Hay
option D.	
Q6.	For measuring a very high resistance we should use

Option A:	Kelvin's bridge
Option A: Option B:	
1	Wheat stone bridge
Option C:	Meggar
Option D:	Maxwell's bridge
07	
Q7.	Maxwell's Inductance bridge is used to measure inductance with
Option A:	High Q value
Option B:	Low Q value
Option C:	Medium Q value
Option D:	Very low Q value
Q8.	Which of the following is NOT part of CRO?
Option A:	Bridge circuit
Option B:	Sweep generator
Option C:	Trigger circuit
Option D:	CRT
Q9.	The shape of Lissajous figure depends on
Option A:	Deflecting plates
Option B:	Sweep generator
Option C:	Delay between two waves
Option D:	Phase difference of two waves
•	
Q10.	The trigger circuit of a CRO is excited by the
Option A:	Y-Plates
Option B:	X-Plates
Option C:	Sweep generator
Option D:	Base generator
option 2.	
Q11.	Which part of CRO develops a saw tooth voltage?
Option A:	Sweep generator
Option B:	Trigger circuit
Option C:	Deflecting plates
Option D:	Power supply
Option D.	
Q12.	In the delay line, the vertical signal voltage to the CRT plates is delayed by and
Q12.	the horizontal sweep is started prior to the vertical deflection.
Option A:	100ns
Option A: Option B:	200 ns
1	
Option C:	300ns
Option D:	400 ns
012	A complex more form to made up of Fundamental for more and its complex t
Q13.	A complex waveform is made up of Fundamental frequency and its components are
	called as
Option A:	Signal
Option B:	Harmonics
Option C:	waveform

Option D:	Pulse wave
Q14.	Which of the following Instrument measures precise harmonic components of the distorted signal?
Option A:	Oscilloscope
Option B:	Digital Multimeter
Option C:	Wave Analyzer
Option D:	DSO
option D.	
Q15.	Successive approximation type is ofDVM.
Option A:	Potentiometric type
Option B:	Ramp type
Option C:	Linear type
Option D:	Non linear type
Q16.	What advantage does a spectrum analyzer have over an oscilloscope in noise measurements?
Option A:	Operation of the spectrum analyzer is fast and simple
Option B:	The spectrum analyzer is more accurate
Option D:	The spectrum analyzer is note accurate The spectrum analyzer makes it easy to check high frequency content at a specific
Option C.	frequency
Option D:	The spectrum analyze can operate to low frequencies.
option D.	The speetrum analyze can operate to low nequencies.
Q17.	Ais a resistance thermometer whose resistance is dependent on the
V 1/.	temperature.
Option A:	Thermocouple
Option B:	Thermistor
Option C:	Thermowell
Option D:	Thermometer
option 2.	
Q18.	Which of following is NOT classification factor of electrical transducer?
Option A:	Ambient temperature
Option B:	Application area.
Option C:	Method of energy conversion
Option D:	O/P signal.
Q19.	Operation of thermocouple is governed by
Option A:	Coulomb effect
Option B:	Seebeck effect
Option C:	Faraday effect
•	Planck effect
Option D:	Flanck effect
Option D:	
•	
Q20.	Gauge factor of strain guage G _f is given by which of the following relation?
Q20. Option A:	Gauge factor of strain guage G_f is given by which of the following relation? $G_{f=} \Delta R/R\Delta l$
Q20. Option A: Option B:	Gauge factor of strain guage G_f is given by which of the following relation? $G_{f=} \Delta R/R\Delta l$ $G_f = R\Delta l/l$
Q20. Option A:	Gauge factor of strain guage G_f is given by which of the following relation? $G_{f=} \Delta R/R\Delta l$

Q21.	is used for the measurement of liquid, gas and very low flow rates.
Option A:	Turbine flow meter
Option B:	Rotameter
Option C:	Magnetic flow meter
Option D:	Venturi tubes
Q22.	In dead weight gauge, weights are added to the top of piston with piston reaches a
	datum level, This level is known as
Option A:	Lowest level point of fluid in container
Option B:	Highest level point of fluid in container
Option C:	Null point, downward force balances fluid pressure
Option D:	Middle level point of fluid in container
Q23.	Which of the following instruments is NOT used for the measurement of pressure?
Option A:	Bellows
Option B:	Diaphragms
Option C:	Strain gauge
Option D:	Thermocouple
Q24.	The most widely used inductive transducer that converts the linear motion into the
	electrical signal is
Option A:	Thermistor
Option B:	RTD
Option C:	LVDT
Option D:	Thermocouple
Q25.	McLeod gauge is used for measurement of
Option A:	High pressure
Option B:	Low pressure
Option C:	Very high Pressure
Option D:	Medium pressure

University of Mumbai Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 7th January 2021 to 20th January 2021 Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Code: ELX305 and Course Name: Electronics Instruments and Measurement Time: 2 hour Max. Marks: 80 _____ _____

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which of the following error can arise as a result of mistake in reading, parallax,
	improper instrument location and inadequate lighting
Option A:	Construction error
Option B:	Transmission Error
Option C:	Observation Error
Option D:	Translation Error
2.	Which of the following is static characteristic?
Option A:	Speed of response
Option B:	Fidelity
Option C:	Lag
Option D:	Resolution
3.	The degree to which sensor characteristics remain constant over time is
Option A:	Sensitivity
Option B:	Linearity
Option C:	Stability
Option D:	Inverse sensitivity
4.	A simple bridge circuit consists of a network of
Option A:	2 resistance arms
Option B:	6 resistance arms
Option C:	4 resistance arms
Option D:	3 resistance arms
5.	Which principle operates a bridge circuit?
Option A:	Kirchhoff's laws
Option B:	ampere's rule
Option C:	partial indication
Option D:	null indication
6.	Which of the following bridges is used for measurement of inductance with
	Quality Factor (Q) higher than 10
Option A:	Anderson Bridge

Option B:	Hay Bridge
Option D: Option C:	
	Maxwell Bridge
Option D:	Kelvin Double Bridge
7.	Which of the following is not part of CRO?
Option A:	Sweep Generator
Option B:	Trigger circuit
Option D:	CRT
Option D:	Bridge Circuit
Option D.	
8.	Control grid is given
Option A:	positive voltage
Option B:	negative voltage
Option C:	neutral voltage
Option D:	zero voltage
o priori 21	
9.	The sweep generator of a CRO is used to produce
Option A:	Saw tooth voltage for the horizontal deflection of electron beam
Option B:	Sinusoidal voltage for the vertical deflection of electron beam
Option C:	Saw tooth voltage for the vertical deflection of electron beam
Option D:	Sinusoidal voltage for the horizontal deflection of electron beam
option D.	
10.	If the two input waveforms of equal amplitude and 90 degree phase difference is
	applied to the CRO then the Lissajous patterns obtained will be
Option A:	Straight line tilted at 45 degree with respect to X-axis
Option B:	Vertical straight line
Option C:	Ellipse
Option D:	Circle
11.	Which of the following is inverting type of DVM?
Option A:	Linear Ramp Type
Option B:	Staircase Ramp Type
Option C:	Successive Approximation Type
Option D:	Duel Slope Integrating Type
12.	Loading effect is principally caused by instruments
Option A:	High resistance
Option B:	Low sensitivity
Option C:	High sensitivity
Option D:	High Range
12	
13.	Digital instruments are those which
Option A:	Have numerical readout
Option B:	Use LED or LCD display
Option C:	Have circuitry of digital design
Option D:	Use deflection type meter movement
14.	Self generating type transducers are transducers.
Option A:	Inverse
Option R:	Secondary
Option D.	Secondary

Option C:	Passive
Option D:	Active
1	
15.	LVDT which is an instrument for the measurement of displacement, works on the
	principal of
Option A:	Mutual inductance
Option B:	Linear inductance
Option C:	Non - linear inductance
Option D:	Linear capacitance
16.	Relation between temperature and resistance of a conductor is
Option A:	$R_t = R_{ref} [1+t]$
Option B:	$R_t = R_{ref} [1 + \alpha \Delta t]$
Option C:	$R_t = R_{ref} [1-\alpha t]$
Option D:	$R_t = R_{ref} [1-t]$
17.	A thermocouple consists of
Option A:	2 wires
Option B:	1 wire
Option C:	4 wire
Option D:	3 wire
18.	The ionization gauge an instrument used for the measurement of
Option A:	Medium pressure
Option B:	High pressure
Option C:	Very high pressure
Option D:	Very low pressure
19.	Which of the following is not a type of pressure sensing element?
Option A:	Bellows
Option B:	Bourdon tube
Option C:	Orifice plate
Option D:	Diaphragm
20.	Turbine meters are generally preferred for
Option A:	High viscosity and low flow measurements
Option B:	High viscosity and high flow measurements
Option C:	Low viscosity and low flow measurements
Option D:	Low-viscosity and high flow measurements

Q2	Solve any Four out of Six	5 marks each
А	Define and Explain 1) Sensitivity 2) Precision	
В	Write difference between Maxwell's and Hay's Bridge	
С	Explain the function of delay line in CRO with diagram	
D	With a neat diagram, explain the principle of digital time	measurement
E	Define transducers and explain the selection criteria of tra	insducers
F	Draw the detailed diagram of Mcleod gauge	

Q3.	Solve any Four out of Six	5 marks each
А	Explain the different types of errors	
В	Draw the neat labelled diagram of LCR Q meter and expla principle	ain its operating
C	Draw a block diagram of CRO and explain electron gun a	ssembly
D	Describe the digital frequency meter along with the diagra	ım
E	Write a short note on LVDT	
F	Write a short note of rotameter	

	University of Mumbai
	Examination 2020
	Program: BE Electronics Engineering
	Curriculum Scheme :Revised 2016(CBCGS)
	Examination : Second Year Semester III
	Course Code : ELX301 Course Name: Applied Mathematics-III
Tim	e: 1 hour Max.Marks:50
Note:	
	stions are compulsory and carry equal marks
	e suitable data wherever necessary
Q1	$L\left[\frac{cosat}{t}\right]$ is
Option A:	$\frac{1}{2}\log(S^2 + a^2)$
Option B:	$\log(S^2 + a^2)$
Option C:	$-\frac{1}{2}\log(S^2 + a^2)$
Option D:	Does not exist
Q2	In the half range cosine Fourier Series of $f(x) = x$ in (0, π) the value of a_n is
Option A:	$2[(-1)^n+1]$
	πn^2
Option B:	
Option C:	$\frac{2[(-1)^n - 1]}{\pi n^2}$
Option D:	1
Q3	For Scalar field $\emptyset = xy^2z^3$ the magnitude of the gradient at point (1,-1,1) is
Option A:	$\sqrt{40}$
Option B:	$\sqrt{14}$
Option C:	$\sqrt{44}$
Option D:	$\sqrt{140}$
Q4	Harmonic conjugate function of $u = y^3 - 3x^2y$ is
Option A:	$y^3 - 3y^2x$
Option B:	$x^3 - 3x^2y$
Option C:	
Option D:	$\frac{x^2 - y^2 - 3x^2y}{2}$
Q5	In Fourier series of $f(x) = x^2 - 2$ in (-2 , 2) then coefficient of sin10x is
Option A:	$\frac{16}{100\pi^2}$
Option B:	-4/3
Option C:	$\frac{-16}{100\pi^2}$
Option D:	0
Q6	Value of $\int_0^\infty \frac{e^{-4t} - e^{-2t}}{t} dt$
Option A:	Log2
Option B:	Log6
Option C:	Log4
Option D:	Log(1/2)

Q7	Normal vector to the surface $2xz^2 = 3xy + 4x + c$ at point (1, -1, 2) is
Option A:	6i -3j +8k
Option B:	7i -3j +8k
Option C:	6i -3j -8k
Option D:	7i -3j -8k
option D.	
Q8	Using Stoke's theorem value of integral $\int_C (yzi + zxj + xyk) d\bar{r}$ where C encloses the area bounded by $x = y^2$ and $y = x^2$ and z=0 is
Option A:	2/3
Option B:	64
Option C:	-1/20
Option D:	0
Q 9	In a Fourier series of $f(x) = 2x$ in $(0, 2\pi)$; the value of a_3 is
Option A:	-4/3
Option B:	1
Option C:	4/9
Option D:	0
Q10	In a Fourier series of $f(x) = e^{-x}$ in (0, 2π); coefficient of sin3x is
Option A:	$\left[\frac{1-e^{-2\pi}}{\pi}\right]\frac{2}{5}$
Option B:	$\frac{1}{10} \left[\frac{1 - e^{-2\pi}}{\pi} \right]$
Option C:	$\frac{-1}{10} \left[\frac{1 - e^{-2\pi}}{\pi} \right]$
Option D:	$\frac{3}{10} \left[\frac{1 - e^{-2\pi}}{\pi} \right]$
Q11	$J_{1}(x)$
~	$\frac{J_{1}(x)}{\frac{1}{2}} = P \text{ then } P \text{ is}$
Option A:	sinx
Option B: Option C:	COSX
Option D:	tanx
	cotx
Q12	Value of $\int_0^\infty t^2 e^{-4t} cosh2t dt$ is
Option A:	
	45
Option B:	$\frac{11}{54}$
Option C:	$ \frac{7}{45} \frac{11}{54} \frac{7}{54} \frac{5}{54} \frac{5}{54} $
Option D:	5
· · · · · · · · · · · · · · · · · · ·	54
Q13	Laplace transform of $\sin^2 x$ is
	Laplace transform of $sin^2 x$ is
Option A:	$\frac{1}{2}\left(\frac{1}{s} + \frac{1}{s^2 + 4}\right)$
Option B:	$\frac{1}{2}\left(\frac{1}{s} - \frac{s}{s^2 + 4}\right)$

Option D: $\frac{1}{2} \left(\frac{1}{s} + \frac{s}{s^2 + 4}\right)$ Q14Which of the following functions is analytic function of z ?Option A: $\bar{z} - z$ Option B: e^z Option D: $\frac{z}{s}$ Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} cos\left(\frac{\theta}{2}\right)$ Option B: $r cos\left(\frac{\theta}{2}\right)$ Option B: $r cos\left(\frac{\theta}{2}\right)$ Option B: $r cos\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} sin(\theta)$ Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} cos\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2 + 9)}\right]$ isOption A: $-\frac{2}{r}(1 - sin2t)$ Option B: $\frac{2}{r}(1 - cos2t)$ Option D: $\frac{1}{9}(1 - cos3t)$ Option D: $\frac{1}{9}(1 - cos3t)$ Q17Orthogonal trajectories to the curve $2x - 2xy = c$ isOption B: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{t}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) isOption A: $1^3/_{12}$	Option C:	$\frac{1}{2}\left(\frac{1}{s} - \frac{1}{s^2 + 4}\right)$
Q14Which of the following functions is analytic function of z ?Qption A: $\bar{z} - z$ Option B: e^z Option C: $2x + ixy^2$ Option D: $\frac{z}{z}$ Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} \cos\left(\frac{\theta}{2}\right)$ Option B: $r \cos\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} \sin\left(\theta\right)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $\sqrt{r} \sin(\theta)$ Q17 $\sqrt{r} \sin(\theta)$ Option B: $\frac{2}{t}(1 - cos2t)$ Option C: $-\frac{1}{3}(1 - cos3t)$ Option D: $\frac{1}{9}(1 - cos3t)$ Option B: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option B: $x^2 + y^2 - 2y = c$ Option B: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $1^3/_{12}$	<u> </u>	
Option A: $\bar{z} - z$ Option B: e^z Option C: $2x + ixy^2$ Option D: \bar{z} \bar{z} Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} cos\left(\frac{\theta}{2}\right)$ Option B: $r cos\left(\frac{\theta}{2}\right)$ Option D: \bar{x} $\sqrt{r} cos\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}(1-sin2t)$ Option B: $\frac{2}{t}(1-cos2t)$ Option D: $\frac{1}{9}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Q17Orthogonal trajectories to the curve $2x - 2xy = c$ isOption A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 + 2y = c$ Option D: $x^2 + y^2 + 2y = c$ Option D: $x^2 + y^2 + 2y = c$ Option D: $x^2 + y^2 + 2y = c$ Opt	Option D:	$\frac{1}{2}\left(\frac{1}{s} + \frac{s}{s^2 + 4}\right)$
Option A: $\bar{z} - z$ Option B: e^z Option C: $2x + ixy^2$ Option D: $\frac{z}{z}$ Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} cos\left(\frac{\theta}{2}\right)$ Option B: $r cos\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} sin\left(\theta\right)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}(1 - sin2t)$ Option B: $\frac{2}{t}(1 - cos2t)$ Option D: $\frac{1}{9}(1 - cos3t)$ Option B: $x^2 - y^2 + 2y = c$ Option B: $x^2 - y^2 - 2xy = c$ Option D: $\frac{1}{s}(x^2 - y^2 - 2xy = c)$ Option D: $x^2 - y^2 - 2y = c$ Option B: $x^2 + y^2 - 2y = c$ Option B: $x^2 + y^2 - 2y = c$ Option B: $x^2 + y^2 - 2y = c$ Option B: $x^2 + y^2 - 2y = c$ Option B: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $1^3/_{12}$	014	Which of the following functions is applytic function of 7.2
Option B: e^z Option C: $2x + ixy^2$ Option D: $\frac{z}{z}$ Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} cos\left(\frac{\theta}{2}\right)$ Option B: $r cos\left(\frac{\theta}{2}\right)$ Option C: $r sin\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}(1-sin2t)$ Option B: $\frac{2}{t}(1-cos2t)$ Option D: $\frac{1}{9}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 - y^2 - 2xy = c$ Option B: $x^2 - y^2 - 2xy = c$ Option C: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $1^3/_{t,12}$		
Option C: $2x + ixy^2$ Option D: $\frac{z}{2}$ Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} \cos\left(\frac{\theta}{2}\right)$ Option B: $r \cos\left(\frac{\theta}{2}\right)$ Option D: $r \sin\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} \sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}(1-sin2t)$ Option B: $\frac{2}{t}(1-cos2t)$ Option D: $\sqrt{1}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 - y^2 - 2xy = c$ Option C: $x^2 + y^2 - 2xy = c$ Option B: $x^2 + y^2 - 2y = c$ Option C: $x^2 + y^2 - 2y = c$ Option D: $x^2 - y^2 - 2xy = c$ Option D: $x^2 - y^2 - 2xy = c$ Option D: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $13/t_12$		
Option D: $\frac{z}{x}$ Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} \cos\left(\frac{\theta}{2}\right)$ Option B: $r \cos\left(\frac{\theta}{2}\right)$ Option C: $r \sin\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} \sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}\left(1-sin2t\right)$ Option B: $\frac{2}{t}\left(1-cos2t\right)$ Option D: $\frac{1}{3}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $13/t_{12}$	-	
Q15Which of the following functions satisfies Laplace equation in polar form?Option A: $\sqrt{r} \cos\left(\frac{\theta}{2}\right)$ Option B: $r \cos\left(\frac{\theta}{2}\right)$ Option C: $r \sin\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} \sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}(1-sin2t)$ Option B: $\frac{2}{t}(1-cos2t)$ Option D: $\frac{1}{3}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 - y^2 - 2xy = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: 13_{t-2}		
Option A: $\sqrt{r} \cos\left(\frac{\theta}{2}\right)$ Option B: $r \cos\left(\frac{\theta}{2}\right)$ Option C: $r \sin\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} \sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}\left(1-sin2t\right)$ Option B: $\frac{2}{t}\left(1-cos2t\right)$ Option C: $-\frac{1}{3}\left(1-cos3t\right)$ Option D: $\frac{1}{9}(1-cos3t)$ Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 - y^2 + 2y = c$ Option B: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $13/_{12}$		
$\begin{array}{c} (1, 500, \binom{2}{2}) \\ \text{Option B:} & r \cos\left(\frac{\theta}{2}\right) \\ \text{Option C:} & r \sin\left(\frac{\theta}{2}\right) \\ \text{Option D:} & \sqrt{r} \sin(\theta) \\ \\ \hline \\ \text{Q16} & L^{-1}\left[\frac{1}{s(s^2+9)}\right] \text{ is} \\ \text{Option A:} & -\frac{2}{t}(1-\sin 2t) \\ \text{Option B:} & \frac{2}{t}(1-\cos 3t) \\ \hline \\ \text{Option C:} & -\frac{1}{3}(1-\cos 3t) \\ \hline \\ \text{Option D:} & \frac{1}{9}(1-\cos 3t) \\ \hline \\ \text{Q17} & \text{Orthogonal trajectories to the curve } 2x - 2xy = c \text{ is} \\ \hline \\ \text{Option A:} & x^2 - y^2 + 2y = c \\ \hline \\ \text{Option B:} & x^2 + y^2 + 2y = c \\ \hline \\ \text{Option C:} & x^2 - y^2 - 2xy = c \\ \hline \\ \text{Option D:} & x^2 + y^2 - 2y = c \\ \hline \\ \text{Option D:} & x^2 + y^2 - 2y = c \\ \hline \\ \text{Option D:} & x^2 + y^2 - 2y = c \\ \hline \\ \text{Q18} & \text{For } \overline{F} = x^2i + yj, \int_c \overline{F} \cdot d\overline{r} \text{ along the curve } y^2 = 2x \text{ from (0,0) to(1,1) is} \\ \hline \\ \text{Option A:} & 13/_{12} \\ \hline \end{array}$	Q15	Which of the following functions satisfies Laplace equation in polar form?
Option C: $r \sin\left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} \sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ is Option A: $-\frac{2}{t}(1-\sin 2t)$ Option B: $\frac{2}{t}(1-\cos 2t)$ Option C: $-\frac{1}{3}(1-\cos 3t)$ Option D: $\frac{1}{9}(1-\cos 3t)$ Q17 Orthogonal trajectories to the curve $2x - 2xy = c$ is Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$	Option A:	$\sqrt{r}\cos\left(\frac{\theta}{2}\right)$
Option C: $r sin \left(\frac{\theta}{2}\right)$ Option D: $\sqrt{r} sin(\theta)$ Q16 $L^{-1} \left[\frac{1}{s(s^2+9)}\right]$ isOption A: $-\frac{2}{t}(1-sin2t)$ Option B: $\frac{2}{t}(1-cos2t)$ Option C: $-\frac{1}{3}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Q17Orthogonal trajectories to the curve $2x - 2xy = c$ isOption A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 + y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) isOption A: $13/_{42}$	Option B:	$r\cos\left(\frac{\theta}{2}\right)$
Option D: $\sqrt{r} \sin(\theta)$ Q16 $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$ is Option A: $-\frac{2}{t}(1-\sin 2t)$ Option B: $\frac{2}{t}(1-\cos 2t)$ Option C: $-\frac{1}{3}(1-\cos 3t)$ Option D: $\frac{1}{9}(1-\cos 3t)$ Q17 Orthogonal trajectories to the curve $2x - 2xy = c$ is Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $13/12$	Option C:	
Option A: $-\frac{2}{t}(1-sin2t)$ Option B: $\frac{2}{t}(1-cos2t)$ Option C: $-\frac{1}{3}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Q17 Orthogonal trajectories to the curve $2x - 2xy = c$ is Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $\frac{13}{12}$	Option D:	
Option A: $-\frac{2}{t}(1-sin2t)$ Option B: $\frac{2}{t}(1-cos2t)$ Option C: $-\frac{1}{3}(1-cos3t)$ Option D: $\frac{1}{9}(1-cos3t)$ Q17 Orthogonal trajectories to the curve $2x - 2xy = c$ is Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $\frac{13}{12}$	016	
Option B: $\frac{2}{t}(1 - cos2t)$ Option C: $-\frac{1}{3}(1 - cos3t)$ Option D: $\frac{1}{9}(1 - cos3t)$ Q17Orthogonal trajectories to the curve $2x - 2xy = c$ isOption A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $x^2 + y^2 - 2y = c$ Option D: $x^2 + y^2 - 2y = c$ Option A: $13/t_{12}$		$\begin{bmatrix} L & 1 \\ \overline{s(s^2+9)} \end{bmatrix}$ IS
Option D: $\frac{1}{9}(1 - cos3t)$ Q17 Orthogonal trajectories to the curve $2x - 2xy = c$ is Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $\frac{13}{12}$		$\frac{1}{2} - \frac{1}{2}(1 - \sin 2t)$
Option D: $\frac{1}{9}(1 - cos3t)$ Q17 Orthogonal trajectories to the curve $2x - 2xy = c$ is Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $\frac{13}{12}$		$\frac{2}{t}(1-\cos 2t)$
Option D: $\frac{1}{9}(1 - cos3t)$ Q17 Orthogonal trajectories to the curve $2x - 2xy = c$ is Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $\frac{13}{12}$		$-\frac{1}{3}(1-\cos 3t)$
Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) isOption A: $13/_{12}$	Option D:	$\frac{1}{9}(1-\cos 3t)$
Option A: $x^2 - y^2 + 2y = c$ Option B: $x^2 + y^2 + 2y = c$ Option C: $x^2 - y^2 - 2xy = c$ Option D: $x^2 + y^2 - 2y = c$ Q18For $\overline{F} = x^2i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) isOption A: $13/_{12}$	Q17	Orthogonal trajectories to the curve $2x - 2xy = c$ is
Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2 i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $13/_{12}$	Option A:	$x^2 - y^2 + 2y = c$
Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2 i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $13/_{12}$	Option B:	$x^2 + y^2 + 2y = c$
Option D: $x^2 + y^2 - 2y = c$ Q18 For $\overline{F} = x^2 i + yj$, $\int_c \overline{F} \cdot d\overline{r}$ along the curve $y^2 = 2x$ from (0,0) to(1,1) is Option A: $13/_{12}$	Option C:	$x^2 - y^2 - 2xy = c$
Option A: $13/12$	Option D:	$x^2 + y^2 - 2y = c$
Option A: $13/_{12}$	Q18	For $\overline{F} = x^2 i + v i$, $\int \overline{F} \cdot d\overline{r}$ along the curve $v^2 = 2x$ from (0.0) to(1.1) is
Option B: $13/_{22}$	Option A:	13/12
	Option B:	$13/_{22}$
Option C: $	Option C:	
Option D: $\frac{13}{24}$	Option D:	$13/_{24}$
Q19 $L^{-1}\left[\frac{1}{2}log\left[\frac{S^2-a^2}{S^2}\right]\right]$ is	Q19	
Option A: $\frac{1-cosat}{t}$	Option A:	$\frac{1-cosat}{t}$
Option B: $\frac{1-sinat}{t}$	Option B:	
Option C: $\frac{1-coshat}{t}$	Option C:	<u>1-coshat</u>
Option D: <u>1-sinhat</u>	Option D:	<u>1-sinhat</u>
		- · · · · · · · · · · · · · · · · · · ·

Q20	If $\overline{F}(r) = \frac{\overline{r}}{r^3}$ then which of the following statement is true
Option A:	\overline{F} is solenoidal but not irrotational
Option A:	\overline{F} is irrotational but not solenoidal
Option C:	\overline{F} is neither solenoidal nor irrotational
Option D:	\overline{F} is both solenoidal and irrotational
Q21	If $L[f''(t)] = \cot^{-1}(S)$, f(0) =3 and $f'(0)$ = -2 then $L[f(t)]$ is
Option A:	$\frac{1}{s^2}[cot^{-1}(S) + 3S - 2]$
Option B:	$\frac{1}{S^2} [cot^{-1}(S) + 3S - 2]$ $\frac{1}{S} [cot^{-1}(S) + 3S - 2]$
Option C:	$\frac{1}{S^2} [cot^{-1}(S) + S - 2]$
Option D:	$\frac{1}{S^2} [cot^{-1}(S) + 2S - 2]$
Q22	If M and N are two functions of x and y and their partial derivatives are single valued continuous function over the closed region bounded by the curve C then
Option A:	$\int_{C} (Mdx + Ndy) = \iint_{R} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dxdy$
Option B:	$\int_{C} (Mdx + Ndy) = \iint_{R} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] dxdy$
Option C:	$\int_{C} (Mdx + Ndy) = \iint_{R} \left[\frac{\partial N}{\partial y} - \frac{\partial M}{\partial x} \right] dxdy$
Option D:	$\int_{C} (Mdx + Ndy) = \iint_{R} \left[\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y} \right] dxdy$
Q23	$L^{-1}\left[rac{1}{\sqrt{4s+1}} ight]$ is
Option A:	$\frac{e^{-t}}{2\sqrt{\pi t}}$
Option B:	$\frac{1}{2\sqrt{\pi t}}$ $\frac{e^{-t}}{2}$
Option C:	$\frac{\overline{2\sqrt{\pi t}}}{\frac{e^{\frac{-t}{4}}}{\sqrt{\pi t}}}$
	$\frac{1}{\sqrt{\pi t}}$
Option D:	$\frac{-t}{e^{\frac{1}{4}}}$
	$\sqrt{2\pi t}$
024	
Q24	Using Gauss Divergence theorem Value of integral $\iint_{S} (xi + yj + zk) \cdot \overline{N} ds$ over the
Option A:	surface $x^2 + y^2 + z^2 = 1$ is 4π
Option A: Option B:	4π 5π
•	$\frac{1}{3}$ 4π
Option C:	$\overline{3}$
Option D:	$4\pi^2$
Q25	If $L[f(t)] = \frac{1}{\sqrt{S}} e^{-1/S}$ then $L[e^{-3t}f(4t)]$ is
Option A:	$e^{\frac{-1}{S+3}} \left[\frac{S-3}{(S+3)^{5/2}} \right]$
Option B:	$\frac{1}{4} \frac{e^{-4}}{e^{S+3}} \left[\frac{S-5}{(S+3)^{5/2}} \right]$
Option C:	$\frac{1}{2}e^{\frac{-4}{5+3}}\left[\frac{1}{(5+3)^{1/2}}\right]$
Option D:	$\frac{1}{4}e^{\frac{-4}{5+3}}\left[\frac{S+5}{(S+3)^{5/2}}\right]$
	۲ L(575)''-J