Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from June 01, 2021

Program: **Electronics Engineering**Curriculum Scheme: Rev 2016

Examination: TE Semester VI

Course Code: ELX601 and Course Name: Embedded Systems and Real Time Operating System

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	circuit prevents the processor/controller from unexpected program
	execution behavior when the supply voltage to the processor/controller falls
Option A:	below a specified voltage. Reset
Option B:	Brown out protection
Option C:	Watchdog
Option C:	Programmable Peripheral Interface
Орион В.	1 Togrammable 1 empherar interface
2.	Ais a computer program that operates or controls a particular type of
	device that is attached to a computer.
Option A:	device disk
Option B:	ISR
Option C:	device driver
Option D:	IPC
•	
3.	In Black Box Testing, the tester
Option A:	is not knowing the internal architecture or structure/techniques of the functional
_	block to be tested.
Option B:	is fully aware the internal architecture or structure/techniques of the functional
	block to be tested.
Option C:	is independent and has no idea of data, requirements or specifications.
Option D:	is not required.
4.	The smart card reader communicates with a desktop machine by implementing a
	communication channel using
Option A:	RS-232 C
Option B:	ZigBee
Option C:	GPRS
Option D:	RS-485
5.	The most important phase in software life cycle is
Option A:	Integration
Option B:	Design

Option C:	Testing
Option D:	Debugging
opnon 2.	
6.	is a timing device that resets the system after a predefined timeout
Option A:	Real time clock
Option B:	Reset circuit
Option C:	Watchdog timer
Option D:	Power down mode
7.	is fast in operation due to its resistive networking and switching
	capabilities
Option A:	NVRAM
Option B:	DRAM
Option C:	SRAM
Option D:	RAM
8.	is a term used to describe a situation when a higher priority task cannot
	execute because it is waiting for a low priority task to complete.
Option A:	IPC
Option B:	Priority Inheritance Protocol
Option C:	Priority Inversion
Option D:	Priority Ceiling
9.	The two common kinds of semaphores are
Option A:	Binary and Counting
Option B:	Primary and Secondary
Option C:	Signal and Pipe
Option D:	Single and Mailbox
10.	is used to acquire semaphore in uCOS-II.
Option A:	OSSemPost()
Option B:	OSSemphore ()
Option C:	OSSemAcq ()
Option D:	OSSemPend()
11.	The fundamental building blocks of UML are
Option A:	Structure and behaviour
Option B:	Things, relationships and diagrams
Option C:	Objects and classes
Option D:	Use case and sequence diagrams
12.	Which of the following is one-time programmable memory?
Option A:	SRAM
Option B:	PROM
Option C:	FLASH
Option D:	NVRAM

13.	Which of the following are the three measures of information security in
13.	embedded systems?
Option A:	Confidentiality, secrecy, integrity
Option B:	Confidentiality, integrity, availability
Option C:	Confidentiality, transparency, availability
Option C:	Integrity, transparency, availability
Option D.	integrity, transparency, availability
14.	A situation where none of the processes are able to make any progress in their execution is termed as
Option A:	Deadlock
Option B:	Livelock
Option C:	Starvation
Option D:	Racing
15.	The state where a process is incepted into the memory and awaiting the processor time for execution is known as
Option A:	Ready State
Option B:	Blocked State
Option C:	Waiting State
Option D:	Created State
•	
16.	The ability of an operating system to hold multiple process in memory and switch the processor (CPU) from executing one process to another process is called
Option A:	Multitasking
Option B:	Multiprocessing
Option C:	Multiprogramming
Option D:	Multithreading
17.	is a sleep and wakeup based mutual exclusion implementation for shared resource access
Option A:	Mutex
Option B:	Remote Procedure call
Option C:	Semaphore
Option D:	Racing
18.	Which is the function call used by an ISR to indicate the occurrence of an interrupt to the MicroC/OS-II Kernel
Option A:	Interrupt
Option B:	OSIntEnter
Option C:	OSIntExit
Option D:	OSIdle
19.	RS 232 is not suitable for communications.
Option A:	Point to Point
Option B:	Multi Drop
Option C:	2 Wire communication
Option D:	Mesh network
1	
	,

20.	is not a task type.
Option A:	Periodic
Option B:	Sporadic
Option C:	Priority Inversion
Option D:	Aperiodic

2	Solve any Two Questions out of Three	10 marks each
(20 Marks)		
A	What is the role of sensor and transducer in Embedded Illustrate with an example.	1 System design?
В	Explain the different types of UML diagram and their sig stage of the system development life cycle.	mificance in each
С	Explain Rate Monotic Scheduling Algorithm; State its disadvantages.	advantages and

Q Q3. (20 Marks)	Solve any Two Questions out of Three 10 marks each
A	Design a Car Cruise-control using uCOS II RTOS. Support the design with
В	requirements, hardware and software architecture. Write a short not on: Hardware-Software Co-design
С	What are the different types of Inter-process communication? Explain any two in detail.

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from June 01, 2021
Program: Electronics Engineering

Curriculum Scheme: Rev 2016 Examination: TE Semester VI

Course Code:ELX602 and Course Name: Computer Communication and Networks Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	We add r redundant bits to each block to make the length $n = k + r$. The resulting n-bit blocks are called
Option A:	Blockword
Option B:	Dataword
Option C:	Code word
Option D:	Word
•	
2.	Which error detection method uses one's complement arithmetic?
Option A:	Simple parity check
Option B:	CRC
Option C:	Two-dimensional parity check
Option D:	Checksum
3.	Automatic repeat request error management mechanism is provided by
Option A:	logical link control sublayer
Option B:	media access control sublayer
Option C:	network interface control sublayer
Option D:	application access control sublayer
4	In PURE ALOHA, vulnerable time isframe transmission time.
Option A:	the same as
Option B:	two times
Option C:	three times
Option D:	four times
5.	Devices in a ring or mesh topology are usually configured in arelationship
Option A:	Peer to peer
Option B:	Point to Point
Option C:	primary to secondary
Option D:	Master & slave
1	
6.	In a mesh topology with n devices, if a new device is added,new links are needed.
Option A:	n

Option B:	n-1
Option C:	n+1 n+1
Option C:	2n
Орион Б.	Zii
7.	A device that helps prevent congestion and data collisions is
Option A:	Switch
Option B:	Hub
Option C:	Gateway
Option D:	Proxy Server
8.	In the Ethernet frame, the field contains error detection information.
Option A:	Address
Option B:	Preamble
Option C:	CRC
Option D:	Type
9.	In the Ethernet, thefield is actually added at the physical layer and is not (formally) the part of the frame.
Option A:	address
Option B:	CRC
Option C:	Preamble
Option D:	Type of protocol
10.	The MAC (Media Access Control) address of the network card is used in both Ethernet and Token-Ring networks and is essential for communication. What does MAC provide?
Option A:	An alias for the computer name.
Option B:	The logical domain address for the workstation.
Option C:	A physical address that is assigned by the manufacturer.
Option D:	A physical address that is randomly assigned each time the computer is started.
11.	An address in a block is 180.8.17.9. Find the first address and last address in the block.
Option A:	180.8.0.0 and 180.8.255.255
Option B:	180.8.1.0 and 180.8.255.0
Option C:	180.8.1.1 and 180.8.255.255
Option D:	180.8.0.0 and 180.8.1.1
12	Dustin langth in classical addressing can be
12.	Prefix length in classless addressing can be
Option A:	1 to 16
Option B:	1 to 32
Option C:	1 to 24 1 to 8
Option D:	1 10 0
13.	What is the SUBNET mask for a class C Network?
Option A:	255.0.0.0
Option B:	255.255.255.0
Option C:	255.255.0.0
opnon o.	

Option D:	255.255.255
14.	Which of the following is the Protocol of Application layer?
Option A:	TCP
Option B:	UDP
Option C:	SCTP
Option D:	DNS
1.7	
15.	To deliver a message to the correct application program running on a host, the address must be consulted.
Option A:	IP
Option B:	MAC
Option C:	Port
Option D:	Physical
1	
16.	What is the hexadecimal equivalent of the Ethernet address 01011010 00010001
	01010101 00011000 10111010 111111111?
Option A:	5A:88:AA:18:55:F0
Option B:	5A:81:BA:81:AA:0F
Option C:	5A:18:5A:18:55:0F
Option D:	5A:11:55:18:BA:FF
17.	User datagram protocol is called connectionless because
Option A:	all UDP packets are treated independently by transport layer
Option B:	it sends data as a stream of related packets
Option C:	it is received in the same order as sent order
Option D:	it sends data very quickly
18.	Which connector does the STP cable use?
Option A:	BNC
Option B:	RJ-11
Option C:	RJ-45
Option D:	RJ-69
19.	The default connection type used by HTTP is
Option A:	Persistent
Option B:	Non-persistent
Option C:	Can be either persistent or non-persistent depending on connection request
Option D:	reference request
20.	Simple mail transfer protocol (SMTP) utilizes as the transport layer protocol
	for electronic mail transfer.
Option A:	TCP
Option B:	UDP
Option C:	IP SCTP
Option D:	SCTP

Q.2	Solve any Two Questions out of Three.	10 marks each)
C		
A	What are the functions of layers in the OSI model?	
В	Classify the various multiple access methods and explain detail.	n CSMA-CD in
С	What is traffic shaping? Explain leaky bucket technique an technique of traffic shaping.	d Token Bucket

Q.3	Solve any Two Questions out of Three. (10 marks each)
	Define the utilization or efficiency of the line and derive the expression for stop and wait flow control. Calculate the maximum link utilization for following cases:
	i)stop and wait flow control
A	ii) Sliding window flow control with window sizes of 4 & 7
	Link specification:
	Frame length=5000 bits/frame
	Velocity of propagation= 2x10 ⁸ m/s, Link distance=30km, Data rate=50 Mbps
В	1 8 2 7 3 9 11 8 4 14 4 8 7 6 10
	Using Dijkstra's shortest path algorithm, find the shortest path
	An organization is granted a block of addresses with the beginning address 14.24.74.0/24. The organization needs to have 3 subblocks of addresses to use in its three subnets as shown below:
С	□One subblock of 120 addresses.
C	□One subblock of 60 addresses.
	□One subblock of 10 addresses
	From above information, design the subnetworks and find the information about each network.

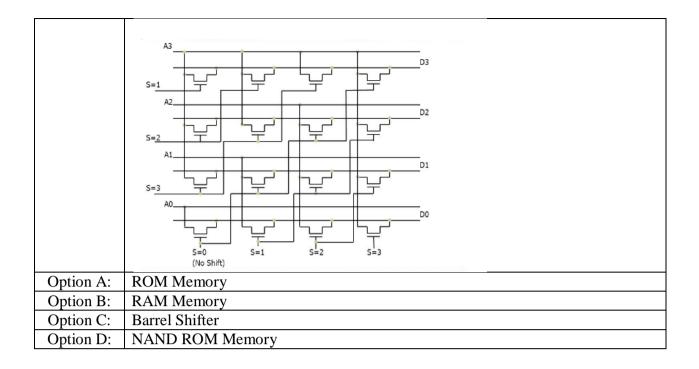
Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from June 01, 2021

Program: **Electronics Engineering**Curriculum Scheme: Rev 2016
Examination: TE Semester VI

Course Code: ELX603 Course Name: VLSI Design


Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The CMOS logic circuit for NOR gate is:
Option A:	A P Y
Option B:	A B Y
Option C:	A B Y

2. In Pseudo-nMOS inverter logic, the gate of pmos transistor operates is: - Option A: Connected to VDD Option B: Grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3.	Option D:	
2. In Pseudo-nMOS inverter logic, the gate of pmos transistor operates is: - Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3	Option D.	V_{DD}
2. In Pseudo-nMOS inverter logic, the gate of pmos transistor operates is: - Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3		·
2. In Pseudo-nMOS inverter logic, the gate of pmos transistor operates is: - Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3		A ————————————————————————————————————
2. In Pseudo-nMOS inverter logic, the gate of pmos transistor operates is: - Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3		в ——
Option A:		Y
Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3.		لط لط ا
Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3.		, , , , , , , , , , , , , , , , , , ,
Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3.		· ·
Option A: Connected to VDD Option B: grounded Option C: Connected to gate of nmos transistor Option D: Kept floated 3.		
Option A:	2.	In Pseudo-nMOS inverter logic, the gate of pmos transistor operates is: -
Option B:	Option A:	
Option C: Connected to gate of nmos transistor Option D: Kept floated 3.		grounded
Option D: Kept floated 3.		
3. Option A: XNOR Option B: XOR Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option D: Option C: Ander Circuits Option D: Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance Option A: When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
C-A indicates complement of A and —B indicates complement of B) Above Circuit is Option A: XNOR Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	•	
(-A indicates complement of A and -B indicates complement of B) Above Circuit is Option A: XNOR Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	3.	-A
(-A indicates complement of A and -B indicates complement of B) Above Circuit is Option A: XNOR Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
(-A indicates complement of A and -B indicates complement of B) Above Circuit is Option A: XNOR Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		Δ
is Option A: XNOR Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		OUT
is Option A: XNOR Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		В
Option A: XNOR Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option B: XOR Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region.		
Option C: AND Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region.		
Option D: OR 4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
4. Sense amplifiers are primarily used in: - Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	Option D:	OR
Option A: Memory circuits Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	4	Company 1: Company and the condition
Option B: Adder Circuits Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option C: Manchester carry chain adders Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	_	
Option D: Operational Amplifier 5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
5. In 6 T SRAM Cell the core is made up of how many inverters Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	Option D.	Operational Ampimer
Option A: 4 Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	5	In 6 T SRAM Cell the core is made up of how many inverters
Option B: 2 Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option C: 5 Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option D: 6 6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
6. The capacitance used in 1 T DRAM cell is: - Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	Priori D.	
Option A: Normal Electrolytic Capacitor Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation	6.	The capacitance used in 1 T DRAM cell is: -
Option B: Diffusion Capacitance Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option C: MOSFET capacitance Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
Option D: Trench Capacitance 7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		
7. When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region. Option A: saturation		WOSFET capacitance
transistors are in region. Option A: saturation		
transistors are in region. Option A: saturation	7	
Option A: saturation	/ .	Trench Capacitance
	7.	Trench Capacitance When a CMOS inverter withdraws maximum current from the supply, the two
Option B: linear		Trench Capacitance When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region.
Option C: non saturation		Trench Capacitance When a CMOS inverter withdraws maximum current from the supply, the two transistors are in region.

Option D:	cut-off
8.	The Manchester Carry-Chain Adder is having a part of transistors that are used to implement the carry chain.
Option A:	PASS
Option B:	PNP
Option C:	NPN
Option D:	BJT
•	
9.	For the body effect to occur in a MOSFET, substrate is biased with respect to
Option A:	Gate
Option B:	Drain
Option C:	Source
Option D:	Body
10.	Ids is to length L of the channel.
Option A:	Square law
Option B:	Logarithmically
Option C:	Directly Proportional
Option D:	Inversely Proportional
11.	. А В
	· · · - · • · · · · · · - · · · · · · · · · ·
	1
	The circuit shows two pass transistors in series. Find the value of Y?
Option A:	Y=A.B
Option B:	Y=A+B
Option C:	Y=A.A
Option D:	Y=B.B
10	ECD whom a manufactural of the
12.	ESD phenomenon stands for
Option A:	Electron Source Detection
Option B:	Electron Static Discharge
Option C:	Electrostatic Discharge
Option D:	Discharged Capacitor
13.	The device in which NMOS and PMOS pair wired in parallel with their sources
13.	connected and drains connected is called as
Option A:	Transmission Gate
Option B:	CMOS inverter
Option C:	Pseudo NMOS inverter
Option C:	Manchester circuit
Орион Б.	Municipester circuit
14.	H-tree Distribution to all chip level circuits is used to avoid following error: -
Option A:	Clock skew
Option B:	Clock jitter
Option C:	Charge sharing

Option D:	Charge leakage
•	
15.	Charge Sharing and Charge Leakage Problem in Domino cascade circuits can be
	removed by
Option A:	Dynamic Circuit
Option B:	Single FET charge keeper circuit.
Option C:	Static CMOS Circuit
Option D:	Clocked CMOS circuits.
16.	The refresh frequency in DRAM cell is
Option A:	$f_{\text{refresh}}=1/2t_{\text{h}}$
Option B:	$f_{\text{refresh}}=1/3t_{\text{h}}$
Option C:	$f_{\text{refresh}}=1/t_{\text{h}}$
Option D:	$f_{\text{refresh}}=1/4t_{\text{h}}$
1.7	
17.	
	R2 R2
	vi vout
	C2 C2
	For the above circuit vi is the input voltage ,vout is the output voltage of the
	circuit. By Elmore's formula find out the time constant of the circuit.
Option A:	R_2C_2
Option B:	$3R_2C_2$
Option C:	$4R_2C_2$
Option D:	$2R_2C_2$
option D.	
18.	When Kn>Kp, Threshold voltage of CMOS Inverter move closer to
Option A:	Zero
Option B:	Infinity
Option C:	Midpoint Value
Option D:	Supply Voltage
•	
19.	In Integrated Chips circuits are connected to each other mostly by: -
Option A:	connection
Option B:	Interconnect
Option C:	wires
Option D:	PCB
20.	Find the name of below diagram

subjective/descriptive questions

Q2	Solve any Four out of Six 5 marks each
(20 Marks)	
A	What is Scaling in VLSI Technology? List the types of scaling and explain any one in detail.
В	Explain CMOS inverter characteristics mentioning it's all regions of operation.
С	Implement $Z=(\overline{A+B+C})\overline{DE}$ using CMOS static circuit.
D	Draw Schematic of 6T SRAM Cell and Explain it's working
Е	Compare pass transistor and transmission gate, list two advantages of transmission gate.
F	Write short note on Importance of low power design in VLSI circuits.

Q3. (20 Marks Each)		
A	Solve any Two out of Three 5	marks each
i.	Write short note on Interconnect scaling and crosstalk of the ir	nterconnect.
ii.	Draw J-K Flipflop using CMOS and explain its operation.	
iii.	Explain concept of precharge and evaluation in Dynamic CMC	OS circuits
В	Solve any One out of Two	0 marks each
i.	Consider a CMOS Inverter circuit with following parameters	
	VTO,n=0.6 v , VTO,p= -0.7v	
	μ nCox=60 μ A/V ² , (W/L) n=8	
	μ pCox=25 μ A/V ² , (W/L) p=12	
	Calculate noise margin, If the power supply voltage VDD=3.3	V
ii.	Compare Ripple carry adder and Carry Lookahead adder, Exp.	lain 4-bit
	CLA adder circuit.	

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from June 01, 2021

Program: **Electronics Engineering**Curriculum Scheme: Rev 2016
Examination: TE Semester VI

Course Code: ELX 604 and Course Name: Signals and Systems

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Determine the signal is periodic or not. If a signal is periodic, specify it's fundamental period of signal $x(n) = e^{j7\pi n}$
Option A:	x(n) is an Aperiodic signal
Option B:	x(n) is Periodic with fundamental period N=2 samples/cycle
Option C:	x(n) is Periodic with fundamental period N=7 samples/cycle
Option D:	x(n) is Periodic with fundamental period N=14 samples/cycle
2.	What is the area of a Unit Impulse function?
Option A:	Zero
Option B:	Half of Unity
Option C:	Depends on the function
Option D:	Unity
3.	Convolution of the sequences of $x_1(n) = x_2(n) = \{1,1,1\}$?
Option A:	{1,1,1,1}
Option B:	{1,2,3,2,1}
Option C:	{1,2,3,1}
Option D:	{1,2,2,1}
4.	A discrete-time system with input $x(n)$ and $y(n)$ related by $y(n) = n[x(n)]$
Option A:	linear ,time varying, and stable
Option B:	non-linear, time invariant, and unstable
Option C:	non-linear, time varying, and stable
Option D:	linear, time varying, and unstable
5.	What is the Nyquist rate of the following signal
	$x(t) = 3\cos(50\pi t) + 10\sin(300\pi t) - \cos(100\pi t)$?
Option A:	50 Hz
Option B:	100 Hz
Option C:	200 Hz
Option D:	300Hz

6.	What is the condition for consolity in Lanlace domain?
	What is the condition for causality in Laplace domain?
Option A:	ROC should be to the right of right most pole
Option B:	ROC should be to the right of right most zero
Option C:	ROC should be to the right of left most pole
Option D:	All the zeros should be in the right half of the s plane
7.	Which type of system response to its input represents the zero value of its initial condition?
Option A:	Zero state response
Option B:	Zero input response
Option C:	Total response
Option C:	Natural response
Option D.	Tvaturai response
8.	What is the z-transform of $x(n-1)$ if $x(n)$ has z-transform $X(Z)$?
Option A:	ZX(Z)
Option B:	$\begin{bmatrix} -X(Z) \end{bmatrix} \begin{bmatrix} Z^1 \end{bmatrix}$
Option C:	$ [X(-Z)][Z^{\wedge}(-1)] $
Option C:	$[X(Z)][Z^{(-1)}]$
Option D.	
9.	A finite- length signal has X (z) = $0.5+0.2 z^{-1} + 0.7 z^{-2} + 0.5 z^{-3}$; its ROC is
Option A:	The entire $z - plane$ except $z = 0$
Option B:	Outside the unit circle
Option C:	Inside the unit circle
Option C:	On the unit circle
Option D.	On the unit chee
10.	The convolution property of the z-transforms states that the inverse z – transform of H (z) X (z) is given by
Option A:	$\sum_{k=0}^{n-1} h(k)x(n-k)$
Option B:	$\sum_{k=0}^{\infty} h(k)x(k-n)$
Option C:	$\sum_{k=-\infty}^{\infty} h(k)x(n-k)$
Option D:	$\sum_{k=-\infty}^{0} h(n-k)x(n)$
11.	Find the Laplace Transform of $y(t) = y(t)$ $y(t) = y(t)$
Option A:	Find the Laplace Transform of $x(t) = u(t) - u(t-a)$
Option A.	$\frac{1-e^{as}}{s}$
Option B:	1
F	
	s-a
Option C:	$1-e^{-as}$
	S
	1

Option D:	1
	$\frac{1}{s+a}$
	s + a
12.	Find the initial and final values for the following function
12.	Find the initial and final values for the following function
	$X(s) = \frac{s+5}{s^2+3s+2}$
Option A:	initial value =0 and final value= 1
Option B:	initial value = 1 and final value = 0
Option C:	initial value = 5 and final value = 3
Option D:	initial value = 3 and final value= 5
13.	The trigonometric Fourier series of a periodic time function can have only
Option A:	Only cosine terms
Option B:	Only sine terms
Option C:	Both cosine and sine terms
Option D:	Dc and cosine terms
14.	Which among the below mentioned transform pairs is/are formed between the auto-correlation function and the energy spectral density, in accordance to the property of Energy Spectral Density (ESD)?
Option A:	Laplace Transform
Option B:	Z-Transform
Option C:	Fourier Transform
Option D:	Wavelet Transform
15.	The Fourier transform of the signal $\delta(t+1) + \delta(t-1)$ is
Option A:	$2/(1+j\omega)$
Option B:	$2/(1-j\omega)$
Option C:	$2\cos\omega$
Option D:	$2 \sin \omega$
16.	Duality Theorem / Property of Fourier Transform states that
Option A:	Shape of signal in time domain & shape of spectrum can be interchangeable
Option B:	Shape of signal in frequency domain & shape of spectrum can be interchangeable
Option C:	Shape of signal in time domain & shape of spectrum can never be interchangeable
Option D:	Shape of signal in frequency domain & shape of spectrum can never be interchangeable
17.	Which theorem states that the total average power of a periodic signal is equal to
17.	the sum of average powers of the individual Fourier coefficients?
Option A:	Parseval's Theorem
Option B:	Rayleigh's Theorem
Option C:	Thevenin's Theorem
Option D:	Norton's Theorem
- F	
18.	Choose the correct expression for Fourier series coefficient Ck in terms of the discrete signal x(n).

Ontion A.	W 4
Option A:	$\frac{1}{N}\sum_{n=0}^{N-1}x(n)e^{\frac{j2\pi nk}{N}}$
Option B:	$\frac{1}{N}\sum_{n=0}^{N-1}x(n)e^{\frac{-j2\pi nk}{N}}$
Option C:	$\frac{1}{N} \sum_{n=0}^{N+1} x(n) e^{\frac{j2\pi nk}{N}}$
Option D:	$\frac{1}{N} \sum_{n=0}^{N+1} x(n) e^{\frac{-j2\pi nk}{N}}$
10	
19.	The discrete time signal a ⁿ .u(n) will have alternate positive and negative
	amplitudes decaying with time for following case.
Option A:	-1 <a<0; and="" n<0<="" td=""></a<0;>
Option B:	-1 <a<0; and="" n="">0</a<0;>
Option C:	0 <a<1; and="" n<0<="" td=""></a<1;>
Option D:	0 <a<1; and="" n="">0</a<1;>
20.	The Fourier transform of the signal sgn(t) is
Option A:	$-2j\omega$
Option B:	$4j\omega$
Option C:	$2/(j\omega)$
Option D:	$(1+j\omega)$

Q2.	(20 Marks)
\mathbf{A}	Solve any Two 5 marks each
i.	Determine the power and energy of the following continuous time signal $x(t)=e^{-at}\ u(t)$
ii.	Check for the Dynamicity, Linearity, Shift Variant , Causality and Stability $y(t) = x(2t)$
iii.	Obtain the Fourier transforms and spectrums of the signal $x(t) = \cos w_o t$
В	Solve any One 10 marks each
i.	Find the inverse Laplace transform of the function $X(S) = \frac{3s+7}{(s^2-2S-3)}$ For ROCs of i) Re (s) > 3 ii) Re (s) < -1 iii) -1 < Re (s) < 3
ii.	Perform the convolution of $x_1(t) = e^{-3t} u(t)$ and $x_2(t) = t u(t)$ Using

mathematical method and also by graphical method.

Q3.	(20 Marks)
A	Solve any Two 5 marks each
i.	Find the DTFT of discrete time signal $x(n) = a^n u(n)$ for $-1 < a < 1$.
ii.	Determine the z-transform of
	$x(n) = (1/2)^n u(n) + 2^n u(n)$. Find the ROC and draw the locations of poles and zeros in the z-plane.
iii.	Write the relationship between z-transform and discrete time fourier transform.
В	Solve any One 10 marks each
i.	Find the inverse z- transform of
	$X(Z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$
	For ROCs of i) ROC: $ (Z) > 1$
	ii) ROC: $ (Z) < 0.5$
	iii) ROC: $0.5 < (Z) < 1$
ii.	Determine DTFS for the sequence $x(n) = 4 \cos(\frac{\pi n}{2})$

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from June 01, 2021

Program: **Electronics Engineering** Curriculum Scheme: Rev 2016 (CBCGS)

Examination: TE Semester VI Course Code: **ELXDLO6023** and Course Name: **Wireless Communication**

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	What must be designed to separate the transmit & receive signal at mobile subscriber unit.
Option A:	Antenna
Option B:	Duplexer
Option C:	Transceiver
Option D:	Control Unit
2.	Formulate the system capacity, if a mobile communication system has allocated number of 800 voice channels. If the service area is divided into 20 cells with a frequency reuse factor of 4.
Option A:	800
Option B:	3200
Option C:	4000
Option D:	16000
3.	For a given frequency reuse ratio of 8 and the cell radius of 0.8 km, the distance between nearest cochannel cells is
Option A:	6.4 km
Option B:	0.8 km
Option C:	0.1 km
Option D:	8.8 km
4.	To examine the measure of the ability of a mobile subscriber to access a cellular
	system during the busiest hour is
Option A:	circuit merit level
Option B:	mean opinion score
Option C:	grade of service
Option D:	service quality
5.	Two main reasons that contribute to the rapid fluctuations of the signal amplitudein mobile communications are
Option A:	Multipath fading and Doppler effect
Option B:	Reflection and Refraction
Option C:	Diffraction and Scattering
Option D:	Blocking and Shadowing

6.	In the development of base station transmitter operates at 900 MHz carrier frequency. For a mobile moving at a speed of 72 Km/h in a direction perpendicular to the direction of arrival of the transmitted signal, the received
	carrier frequency is
Option A:	899.9994 MHz
Option B:	900.00006 MHz
Option C:	900.00003 MHz
Option D:	900 MHz
7.	When 2 mobile subscribers are located at distance of 100 meters & 1 km apart
	from cell site resp. then by what amount the received signal strength differs?
	(assuming other parameters are constant).
Option A:	20 dB
Option B:	40 dB
Option C:	80 dB
Option D:	100 dB
8.	The guard time between the time slots in TDMA frame helps in minimizing the
	interference due toalong different radio paths in the wireless channel.
Option A:	propagation delays
Option B:	adjacent channel
Option C:	multipath fading
Option D:	timing inaccuracies
9.	To synthesize the increment in bandwidth of message signa, the deciding factor
	is
Option A:	PN Sequence
Option B:	Gold sequence
Option C:	Spread spectrum
Option D:	Processing gain
10.	X-OR addition of 2 m sequence PN generators is nothing but
Option A:	propagation delay generator
Option B:	spectrum modulation
Option C:	golden ration generator
Option D:	gold sequence generator
11.	To organize high spectrum efficiency and constant amplitude in GSM, the
	modulation technique used is
Option A:	FSK
Option B:	QPSK
Option C:	GMSK
Option D:	OFDM
12.	To facilitate the identity of mobile phone device, the MSC uses the database as
Option A:	HLR

Option B:	VLR	
Option C:	AuC	
Option D:	EIR	
орион В.		
13.	Considering Coded data packets in GSM, compute the net data rate (data plus	
	signaling) and the effective transmission rate of a 9,600 bps GSM data service.	
Option A:	9600 bps	
Option B:	22.8 kbps	
Option C:	33.854 kbps	
Option D:	13 kbps	
14.	If the trailing bits, stealing bits, guard bits, and training bits in a GSM frame are	
1	considered as overhead, and the rest of the bits as data, then what is the	
	percentage overhead in a GSM frame?	
Option A:	57.14 %	
Option B:	70.166 %	
Option C:	91 %	
Option D:	27 %	
1		
15.	To illustrate the user occupying (a single) time slot has to wait for time duration	
	of between two successive transmissions	
Option A:	577 μs	
Option B:	4.615 ms	
Option C:	120 ms	
Option D:	6.12 s	
16.	While design, the effect of spread spectrum modulation is that the bandwidth of	
	the spreaded signal	
Option A:	remains constant	
Option B:	increases significantly	
Option C:	increases marginally	
Option D:	decreases	
1.7		
17.	How much bandwidth is occupied in selection of each carrier of IS-95 standard	
Option A:	25 KHz	
Option B:	30 KHz	
Option C:	200 KHz	
Option D:	1250KHz	
18.	Cdma2000-1xRTT system supports a typical throughput of up to per	
	mobile user.	
Option A:	115kbps	
Option B:	144 kbps	
Option C:	384 kbps	
Option D:	2 mbps	
19.	In closed loop power control, the base station sends power control messages to	
	the mobile user about once every	

Option A:	1 ms
Option B:	10 ms
Option C:	100 ms
Option D:	1 s
20.	The logical control channel specified on the reverse link in W-CDMA system is
	which channel?
Option A:	Sync
Option B:	Access
Option C:	Paging
Option D:	pilot

Q2			
A	Solve any Two 5 marks each		
i.	Distinguish between frequency division duplexing & time division duplexing		
ii.	Describe various factors influencing small scale fading		
iii.	Discuss in brief about TDMA frame structure & Efficiency of TDMA.		
В	Solve any One 10 marks each		
i.	Explain GSM Network architecture with neat block diagram.		
	Compute the longest time over which a mobile station would have to wait in		
	order to determine the frame number being transmitted by GSM cell-site.		
ii.	Illustrate the function of GPRS architecture in brief.		
	A CDMA system has a bandwidth of 1.25 MHz and transmits baseband data at		
	9.6 kbps rate. If 40 number of users can simultaneously establish communication		
	links, what is the bandwidth efficiency of the system?		

Q3		
A	Solve any Two 5 marks each	
i.	Describe the concept of frequency reuse, define cluster.	
ii.	Explain the types of small-scale fading.	
iii.	Discuss about direct sequence spread spectrum transmitter & receiver with	
	neat block diagram.	
В	Solve any One 10 marks each	
i.	Explain hand off in GSM, Illustrate types of GSM hand off in GSM. If the	
	trailing bits, stealing bits, guard bits, and training bits in a GSM frame are	
	considered as overhead, and the rest of the bits as data, then what is the	
	percentage overhead in a GSM frame?	
ii.	Distinguish between W-CDMA and IS-95 CDMA.	
	Determine the maximum raw instantaneous data rate that can be provided to a	
	single user in EDGE, assuming that a single time slot on a single GSM channel	
	is available.	

Examination 2021 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from June 01, 2021Program: **Electronics Engineering**

Curriculum Scheme: Rev 2016 Examination: TE Semester VI

Course Code: ELXDLO6024 and Course Name: Computer Organization and Architecture Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsor and carry equal marks		
	and carry equal marks		
1.	Which of the following Special purpose register holds the address of next instructions to		
1.	be executed?		
Option A:	Program Counter		
Option B:	Instruction Register		
Option C:	MAR		
Option D:	Base Register		
2.	Booth's Multiplier		
Option A:	reduces the number of partial products		
Option B:	increases the number of partial products		
Option C:	multiplies the number of partial products		
Option D:	divides the partial products		
•			
3.	Bias value for single precision and double precision representation is &		
Option A:	128, 1024		
Option B:	127, 1023		
Option C:	256, 512		
Option D:	32, 64		
4.	A set of microinstructions for a single machine instruction is called		
Option A:	Program		
Option B:	Command		
Option C:	Micro program		
Option D:	Micro command		
5.	Full form of MFLOPS is		
Option A:	Millions of Fixed Point Operations Per Second		
Option B:	Millions of Floating Point Operations Per Second		
Option C:	Millions of Floating Point Opcodes Per Second		
Option D:	Millions of Flip/Flops Operations Per Second		
6.	A micro-programmed control unit		
Option A:	faster than a hard-wired control unit		
Option B:	facilitates easy implementation of new instructions		
Option C:	useful when very small programs are to be run		
Option D:	usually refers to the control unit of microprocessor.		
7.	How many 128 X 8 RAM chips are needed to provide a memory capacity of 2048 bytes?		
Option A:	8		
Option B:	16		

Option C:	2		
Option D:	4		
Option D.			
8.	Which of the following is not a write policy to avoid Cache Coherence?		
Option A:	Write through		
Option B:	Write within		
Option C:	Write back		
Option D:	Buffered write		
Option D.	Burrered write		
9.	Which algorithm chooses the page that has not been used for the longest period of time		
	whenever the page required to be replaced?		
Option A:	First in first out algorithm		
Option B:	Additional reference bit algorithm		
Option C:	Least recently used algorithm		
Option D:	Counting based page replacement algorithm		
10.	What are the five main components of a computer system		
Option A:	CPU,CD-ROM, Mouse, Keyboard, Sound Card		
Option B:	Memory ,Video card, Monitor, Software, Hardware		
Option C:	Modem, Keyboard, Word Processor, Printer, Screen		
Option D:	CPU, Memory ,System bus ,Input, Output		
11.	Cache memory works on the principle of		
Option A:	Locality of Memory		
Option B:	Locality of reference		
Option C:	Locality of data		
Option D:	Locality of reference and memory		
12.	Hidden bus arbitration is feature of		
Option A:	MOD BUS		
Option B:	CAN BUS		
Option C:	PCI BUS		
Option D:	ISA BUS		
13.	SIMD stands for		
Option A:	Single information Multiple Design		
Option B:	Single Instruction Multiple Data		
Option C:	Single Instructions Multiple Design		
Option D:	Single Information Multiple document		
1 4	Which of the following processes has a first langth of instruction of		
14.	Which of the following processor has a fixed length of instructions?		
Option A:	CISC		
Option B:	RISC		
Option C:	EPIC		
Option D:	Multi core		
15.	The concept of pipelining is most effective performance if the tasks being performed in		
13.	different stages		
Option A:	Require different amount of time		
Option B:	Require about the same amount of time		
Option C:	Require different amount of time with time difference between any two tasks being same		
Option C:	Require different amount with time difference between any two tasks being different		
option D.	1.040.10 chilotone amount with time difference octween any two tasks being different		
16.	The set of loosely connected computers are called as		
Option A:	LAN		
Option A.	LAN		

0 5	YYYAAY	
Option B:	WAN	
Option C:	Workstation	
Option D:	Cluster	
17.	An instruction pipeline can be implemented by means of	
Option A:	LIFO Buffer	
Option B:	FIFO Buffer	
Option C:	Stack	
Option D:	Both LIFO Buffer and FIFO Buffer	
18.	The Unit of data Exchange between Cache and Main Memory is known as	
Option A:	Cache size	
Option B:	Block size	
Option C:	Page size	
Option D:	Segment size	
19.	Hazards due to resource conflict are called as	
Option A:	Data Hazard	
Option B:	Control Hazard	
Option C:	Structural Hazard	
Option D:	Both Data Hazard and Control Hazard	
20.	The following sequence of virtual page numbers is encountered in the course of	
	execution on a computer with virtual memory: 3 4 2 6 4 7 1 3 2 6 3 5 1 2 3 Assume that a	
	least recently used page replacement policy. Find out the Page Hit Ratio with main	
	memory with Page capacity $n = 4$. Assume that main memory is initially empty.	
Option A:	0.22	
Option B:	0.10	
Option C:	0.20	
Option D:	0.16	

Q2		
(20 Marks)		
A	Solve any Two 5 marks each	
i.	Draw and explain instruction state diagram(without interrupt).	
ii.	Explain different write policy methods.	
iii.	Explain SRAM structure and working.	
В	Solve any One	10 marks each
i.	Discuss system buses in detail. Highlight PCI bus and its operatio	n in detail.
ii.	Discuss Hardwired and Micro-programmed Control unit in detail.	
Q3		
(20 Marks)		
A	Solve any Two out of three	5 marks each
i.	Write short notes on GPU.	
ii.	Discuss paging concept in short.	
iii.	Discuss I/O handling techniques. (any two techniques)	
В	Solve any One out of two	10 marks each
i.	Discuss parallel processing and pipelining in detail.	
ii.	Explain Flynn's classification in detail with suitable diagrams.	