Q. P. Code: 36789

(3 Hours) (Total Marks: 80)

Please check whether you have the right question paper.

Question No.1 is compulsory.

N.B.:

1)

- (02-00	_,	\$ 19 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	200900
	2)	Answer any Three out of remaining five questions	
	3)	Draw the neat diagrams wherever necessary.	
Q1.			20M
A]	Explain	Air Bag deployment System in brief.	
B]	What ar	re micro-actuators pertaining to MEMS Technology? Give two examples.	83700
C]	Define 1	piezoresistivity and list out all piezo-resistive coefficients.	£ 5 8 8
D]	Explain	the role of sacrificial layer in fabrication of MEMS devices.	SOLADI
			955
Q2.			
A]	What a	re ploymers? Draw structure of PMMA polymer and discuss its role in	10M
	MEMS	fabrication.	
B]	What de	o you understand by a clean room? Explain the steps in a standard RCA	10M
	cycle dı	uring wafer cleaning.	
Q3.			
A]		fferent types of pressure sensors and explain in detail, fabrication steps	10M
	-	ezo-resistive pressure sensor.	
B]		eat diagram and explain lift-off process. Why would one use it, in MEMS	10M
	fabricat		
		\$255449555555555555555555555555555555555	
Q4.			403.5
A]	~ ~	the steps involved in fabrication of MEMS with proper illustration of	10M
.	- 00° NY NO	micromachining.	403.5
B]	0' Ro' 0 Y 22	e the DRIE process. How can DRIE achieve virtually perfect vertical	10M
190	etching	\$\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$	
OF S			
Q5.	What d	you mean by wafer bonding? Explain with neat diagram, different wafer	10M
Al	9123	g techniques.	10101
B	Q'20'0'	the the representative process flow for fabricating the ink jet printer head	10M
	01 - 20	e the representative process now for fabricating the like jet printer head elett- Packard. Also explain the operating principle of this MEMS device	10101
660	(\\ \)	oper illustration of Ink-firing mechanism.	
(\$\\ \)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	with pro	oper mustration of this-ining mechanism.	
Q6.	Write of	hort note on:	20M
Q0. A]) [VXX) VO	packaging & its challenges.	4 01 VI
B]	A " N O . V	spect Ratio MEMS fabrication.	
C]	0 1 1 T 1 O 1 O	MEMS in IoT.	
D]	N 201 X 10	Accelerometer.	
	6800		

B297E767DF520ADB91CFF850B6B2B1F3

Q.P. Code :37961

Time: 5 nours	
	[Warks: o
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

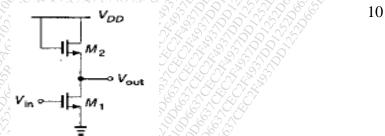
D1 1 1 41	1 1	4 41 1_4		YLAD (A.1 (A
Please check whether	vou nave	got the right	anesnon	naner
Trease effects which the	y ou mare	500 0110 115110	question	Paper.

- N.B: 1. Question.No.1 is compulsory.
 - 2. Attempt any three questions from the remaining five questions.

Q.1		Answer the following:	20
	a)	What is meant by frequency reuse? What is its effect on the co-	
		channel interference?	
	b)	State the radio specifications of GSM.	
	c)	Compare GSM and CDMA technologies.	S. A.
	d)	Explain the terms of soft, softer and soft-softer handoffs.	
Q.2	a)	Draw a well labelled diagram and explain in detail the	10
		architecture of GSM.	
	b)	Explain GSM frame and time slot structure with the required figures.	10
Q.3	a)	Explain mobility and radio resource management in CDMA.	10
	b)	With a neat block diagram, explain the working of a reverse channel CDMA IS95 modulation process for a single user?	10
Q.4	a)	What is WCDMA air interface and discuss the important	10
		parameters in it.	
	b)	Discuss the evolution path towards LTE and mention the important features of LTE.	10
Q.5	a)	Describe UMTS architecture with a neat diagram and	10
799		interfaces.	
00	b)	Compare 3G and 4G technologies.	05
	c)	Write a detailed note on mobile IP.	05
Q.6		Write short notes on:	20
5. E. C.	a)	WiMax	
3,72	b)	GPRS technology	
	c)	RFID	
3.50	d	MANET	

Q.P. Code :37961

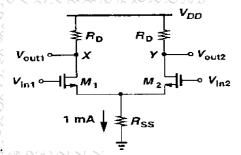
Time: 5 nours	
	[Warks: o
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


D1 1 1 41	1 1	4 41 1_4		YLAD (A.1 (A
Please check whether	vou nave	got the right	anesnon	naner
Trease effects which the	y ou mare	500 0110 115110	question	Paper.

- N.B: 1. Question.No.1 is compulsory.
 - 2. Attempt any three questions from the remaining five questions.

Q.1		Answer the following:	20
	a)	What is meant by frequency reuse? What is its effect on the co-	
		channel interference?	
	b)	State the radio specifications of GSM.	
	c)	Compare GSM and CDMA technologies.	S. A.
	d)	Explain the terms of soft, softer and soft-softer handoffs.	
Q.2	a)	Draw a well labelled diagram and explain in detail the	10
		architecture of GSM.	
	b)	Explain GSM frame and time slot structure with the required figures.	10
Q.3	a)	Explain mobility and radio resource management in CDMA.	10
	b)	With a neat block diagram, explain the working of a reverse channel CDMA IS95 modulation process for a single user?	10
Q.4	a)	What is WCDMA air interface and discuss the important	10
		parameters in it.	
	b)	Discuss the evolution path towards LTE and mention the important features of LTE.	10
Q.5	a)	Describe UMTS architecture with a neat diagram and	10
799		interfaces.	
00	b)	Compare 3G and 4G technologies.	05
	c)	Write a detailed note on mobile IP.	05
Q.6		Write short notes on:	20
5. E. C.	a)	WiMax	
3,72	b)	GPRS technology	
	c)	RFID	
3.50	d	MANET	

Time: 3 Hours Max Marks: 80

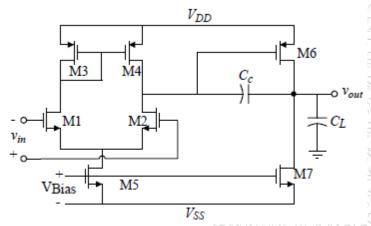

- N.B. 1) Question No.1 is compulsory
 - 2) Solve any three questions from the remaining questions.
 - 3) Assume suitable data if necessary.
 - 1 Solve any four of the following.
 - (a) Explain trade-offs in analog design with the help of analog design octagon
 - (b) For a n-channel MOSFET draw- a)a basic small signal model b) small signal model 5 considering channel length modulation effect c) small signal model considering body effect
 - (c) Explain the concept of clock feed through in the MOSFET sampling circuit 5
 - (d) Compare performance of various op-amp topologies
 - (e) Derive expression for input referred noise of CS stage 5

5

Identify the above network .Derive the gain equation of the above circuit.

- (b) Derive equation of differential gain, common mode gain and CMRR of a differential 10 amplifier circuit.
- 3 (a) The following circuit uses a resistor rather than a current source to define a tail 10

current of 1mA.


Assume (W/L) $_{1,\,2}$ =25/0.5, $\mu_n\,C_{ox}$ =50 μ A/V², V_{TH} =0.6V, λ =0, V_{DD} =3V

- (a) What is the required input CM for which Rss sustains 0.5V?
- (b)Calculate R_D for a differential gain of 5
- (c) What happens at the output if input CM level is 50mV higher than the value calculated in (a)?
- (b) Derive expression for voltage gain A_V and output resistance Ro of source follower stage.

66578 Page **1** of **2**

20

Design two stage operational amplifiers that meet the following specifications Q.4

Av > 3000V/V $V_{DD} = 2.5 V V_{SS} = -2.5 V$

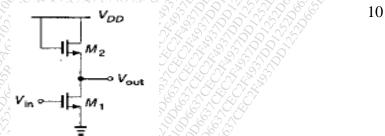
Gain Bandwidth = 5MHz, Slew Rate $> 10V/\mu s$, 60° phase margin,

 $0.5V < V_{out}$ range < 2V,

ICMR = -1.25V to 2V,

 $P_{diss} \le 2 \text{ mW}, C_L = 10 \text{pF}$

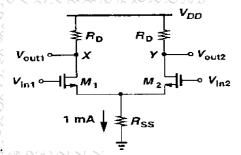
Use $K_N = 100 \mu A/V^2$, $K_P = 20 \mu A/V^2$, $V_{TN} = |V_{TP}| = 0.5 V$, $\lambda_N = 0.06 V^{-1}$,


 $\lambda_P = 0.08 \text{V}^{-1}$, Cox=2.47fF/µm².

Verify that the designed circuit meets required voltage gain and power dissipation specifications

- (a) Explain the charge injection mechanism in MOS sampling circuits and also 5 10 describe the errors contributed by the above effect.
 - What is a band gap reference? Describe methods of implementation of band gap 10 references
- 6 Write short note on any four
 - (a) Necessity of Millers theorem 5
 - (b) Gilbert Cell 5 5
 - Charge Pump PLL (c)
 - 5 (d) Comparison of full custom design and semi custom design (e) Performance parameters of VCO 5

66578 Page 2 of 2 Time: 3 Hours Max Marks: 80

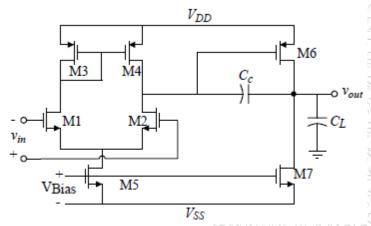

- N.B. 1) Question No.1 is compulsory
 - 2) Solve any three questions from the remaining questions.
 - 3) Assume suitable data if necessary.
 - 1 Solve any four of the following.
 - (a) Explain trade-offs in analog design with the help of analog design octagon
 - (b) For a n-channel MOSFET draw- a)a basic small signal model b) small signal model 5 considering channel length modulation effect c) small signal model considering body effect
 - (c) Explain the concept of clock feed through in the MOSFET sampling circuit 5
 - (d) Compare performance of various op-amp topologies
 - (e) Derive expression for input referred noise of CS stage 5

5

Identify the above network .Derive the gain equation of the above circuit.

- (b) Derive equation of differential gain, common mode gain and CMRR of a differential 10 amplifier circuit.
- 3 (a) The following circuit uses a resistor rather than a current source to define a tail 10

current of 1mA.


Assume (W/L) $_{1,\,2}$ =25/0.5, $\mu_n\,C_{ox}$ =50 μ A/V², V_{TH} =0.6V, λ =0, V_{DD} =3V

- (a) What is the required input CM for which Rss sustains 0.5V?
- (b)Calculate R_D for a differential gain of 5
- (c) What happens at the output if input CM level is 50mV higher than the value calculated in (a)?
- (b) Derive expression for voltage gain A_V and output resistance Ro of source follower stage.

66578 Page **1** of **2**

20

Design two stage operational amplifiers that meet the following specifications Q.4

Av > 3000V/V $V_{DD} = 2.5 V V_{SS} = -2.5 V$

Gain Bandwidth = 5MHz, Slew Rate $> 10V/\mu s$, 60° phase margin,

 $0.5V < V_{out}$ range < 2V,

ICMR = -1.25V to 2V,

 $P_{diss} \le 2 \text{ mW}, C_L = 10 \text{pF}$

Use $K_N = 100 \mu A/V^2$, $K_P = 20 \mu A/V^2$, $V_{TN} = |V_{TP}| = 0.5 V$, $\lambda_N = 0.06 V^{-1}$,

 $\lambda_P = 0.08 \text{V}^{-1}$, Cox=2.47fF/µm².

Verify that the designed circuit meets required voltage gain and power dissipation specifications

- (a) Explain the charge injection mechanism in MOS sampling circuits and also 5 10 describe the errors contributed by the above effect.
 - What is a band gap reference? Describe methods of implementation of band gap 10 references
- 6 Write short note on any four
 - (a) Necessity of Millers theorem 5
 - (b) Gilbert Cell 5 5
 - Charge Pump PLL (c)
 - 5 (d) Comparison of full custom design and semi custom design (e) Performance parameters of VCO 5

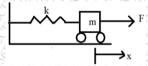
66578 Page 2 of 2

Paper / Subject Code: 53007 / Advanced Networking Technologies

		(3 Hrs) 1 Otal Warks:	80
N. B.	1. (Question No 1 is compulsory.	7 7 6 7 7 6
		Solve any three from remaining.	2 A
			2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q 1		Answer any four:	20
	(a)	What is the need for Wireless Sensor network? Explain the WSN Protocol stack.	
	(b)	Explain the need for DWDM. Compare it with WDM.	OK TY.
	(c)	"AAL 5 is a widely used ATM adaptation layer protocol": justify with	12 6
		(i) Mention the main functions of AAL	
		(ii) Name practical Examples that use services of AAL5.	200
	(d)	Draw and explain different states of Bluetooth enabled device.	227
	(e)	What are the different network security threats and safeguards? Explain.	5 50°
0.2	(-)		10
Q 2	(a)	Draw and explain Bluetooth protocol stack in detail.	10
	(b)	Compare Ubiquitous and hierarchical access in Access Network design. Explain the steps for completing access layer design in detail.	10
		for completing access rayer design in detail.	
Q 3	(a)	In frame relay frame format, which bit is used to avoid network congestion? Draw and	10
	()	explain frame format of Frame relay.	
	(b)	Bring out the advantages of Optical networking. With a neat sketch, explain the SONET	10
	. ,	hardware components along with its functional layers.	
Q 4	(a)	What is a firewall? What are the capabilities and limitations of firewall? Discuss the	10
		different types of firewalls, along with their advantages and disadvantages.	
	(b)	With reference to ATM:	10
		(i) Explain ATM Protocol architecture, bringing out the functions of ATM layer.	
		(ii) Compare the following ATM Adaptation Layer Protocols : AAL1, AAL2, AAL3/4,	
		AAL5	
0.5	(0)	Dury and symbols (2) HEER 202 15 2 LD WIDAN Daving analyte styre	10
Q 5	(a)	Draw and explain (i) IEEE 802.15.3 LR-WPAN Device architecture.	10
	(b)	(ii) ZigBee technology Write short notes on : (i) B-ISDN model of ATM (ii) UWB	10
((0)	White short notes on. (i) b-is biv model of ATW (ii) UWB	10
Q6	000	Write a short note on :. (Any four)	20
200	(a)	DMZ.	
	(b)	SNMP	
2000	(c)	RFID.	
3 200	(d)	RMON	
The second	(e)	VOFR	
1 L K.	en all	201.40 1.00 201.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00	

Paper / Subject Code: 53002 / Elective II 1)Robotics

(Time: 3 Hours) [Total Marks:80]


NB.

- (1) Question No.1 is compulsory.
- (2) Attempt any three questions from remaining.
- (3) All questions carry equal marks.
- (4) Assume suitable data wherever necessary.
- **Q.1** Answer any **four** of the following:
 - a) With neat sketch define Joint and Link parameters. (5)
 - b) Explain how tool orientation is specified. (5)
 - c) What is homogeneous transformation matrix? Give the transformation matrix for pure translation and pure rotation. (5)
 - d) Explain template matching in robot vision. (5)
 - e) Justify "Inverse kinematics problem is not unique." (5)
- Q.2 a) Develop the DH representation of a four axis SCARA robot and obtain its arm matrix. (10)
 - b) Let F= {f¹, f², f³} and M={m¹, m², m³} be two initially coincident fixed and mobile orthonormal coordinate frames.

 Suppose the point P at the tool tip has mobile coordinates [P] M = [7,3,1]^T. Find [P] f after the following transformations,
 - 1. Rotate M by $\Pi/2$ radians about f^3 axis
 - 2. Then translate the rotated M by 4 units along f¹ axis.
- Q.3 a) Find the new location and orientation of frame B after a (10) differential rotation of 0.1 radians about the y axis followed by a differential translation of [0.1, 0, 0.2].

$$B = \begin{bmatrix} 0 & 0 & 1 & 10 \\ 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

b) Derive the force acceleration relationship for a 1 DOF system (10) given below using Lagrangian mechanics as well as Newtonian mechanics. Assume the motion is linear with no inertia.

- Q.4 a) Explain robot motion planning using Bug 1 and Bug 2 algorithm. (10)
 - b) What is a GVD? Sketch all the GVD's resulting due to the basic interactions of the obstacle .Derive the necessary equations. (10)
- Q.5 a) Explain Visibility Graph algorithm. (10)
 - b) Explain the different moments to characterize shapes. (10)
- **Q.6** Write short notes on any **four** of the following: (20)
 - a) Cartesian Space trajectory
 - b) Potential Functions
 - c) Shrink and Swell Operators
 - d) Work Space Envelope
 - e) Perspective Transformations
