01.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks									
1										
	K means clustering is based on model of machine learning.									
Option A:	Geometric model									
Option B:	Probabilistic model									
Option C:	Logical model									
Option D:	Tree model									
2	The aim of is to reduce the number of features in a dataset by									
	generating new ones from the existing ones									
Option A:	Feature selection									
Option B:	Feature thresholding									
Option C:	Feature extraction									
Option D:	Feature cancellation									
3.	The performance of classification is assessed using									
Option A:	Square Matrix									
Option B:	Confusion Matrix									
Option C:	Diagonal Matrix									
Option D:	Identity Matrix									
4.	is a harmonic mean of precision and recall.									
Option A:	Specificity									
Option B:	F1-Score									
Option C:	Accuracy									
Option D:	Sensitivity									
5.	measure is used for node splitting in Decision tree.									
Option A:	Gini Index									
Option B:	Mini Index									
Option C:	Rand Index									
Option D:	Maximum Index									
6.	The shows the trade-off between sensitivity (or TPR) and									
	specificity (1 – FPR).									
Option A:	POC Curve									
Option B:	ROC Curve									
Option C:	MOC Curve									
Option D:	TOC Curve									
7	Difficulty of learning the joint probability in case of Paylos Classifier is solved by									
/.										
Option A:	Simple Linear regression									
Option B:	Logistic regression									
Option C:	Naïve Bayes									

Option D:	Multiple Linear regression									
8.	is stopping criteria in K Means Clustering									
Option A:	re-assignments of data points to different clusters									
Option B:	no re-assignments of data points to different clusters									
Option C:	maximum decrease in the sum of squared error									
Option D:	maximum change of centroids									
9.	EM algorithm stands for									
Option A:	Expectation-Maximisation									
Option B:	Energy-Maximization									
Option C:	Expectation-Minimisation									
Option D:	Energy-Minimization									
10.	Soft SVM is used when the data is									
Option A:	clean									
Option B:	Linear									
Option C:	circular									
Option D:	noisy									

Q2.	Solve any Two Questions out of Three 10 marks each							
(20 Marks								
Each)								
А	What is Machine Learning? Explain the issues in Machine Learning.							
В	How the performance of classification and regression is assessed? Explain.							
С	What is supervised learning? Explain the steps in developing Decision Tree algorithm.							
Q3.	Solve any Two Questions out of Three 10 marks each							
(20 Marks								
Each)								
А	Write a note on PCA.							
В	What do you mean by ROC curve? Describe ranking and probability estimation trees.							
С	Describe the application of Machine Learning in healthcare.							
Q4.	Solve any Two Questions out of Three 10 marks each							

(20 Marks												
Each)	For the following data to construct the devision (
А	For the following data, to construct the decision tree calculate Gini indexes a											
	determine which attribute is root attribute.											
	1								Cred	it Pati	Brais Com	
		Sr. No	Age	Income			Stude	ent ng			puter	
		1	<=30	high			No	Fair			No	
		2	<=30	hi	gh		No	Exce		llent	No	
		3	3140	hi	gh		No	Fair			Yes	
		4	>40	medium			No	Fair			Yes	
		5	>40	low			Yes	Fair			Yes	
		6	>40	lo	low			Exce		llent	No	
		7	3140	lo	W		Yes	Exce		llent	Yes	
		8	<=30	m	edium		No	Fair			No	
		9	<=30	lo	W		Yes	Fair			Yes	
		10	>40	m	edium		Yes		Fair		Yes	
		11	<=30	m	edium		Yes		Exce	llent	Yes	
		12	3140	m	edium		No		Exce	llent	Yes	
		13	3140	hı	gh 1.		Yes		Fair	11	Yes	
		14	>40	m	edium		No		Exce	llent	No	
	The pairwise distance between 6 points is given below Using complete linkage proximity function in hierarchical clustering find and draw the resulting dendrogram.											
	20	p1	p2		p3	1	p4	p5		p6		
	p1	0.00	0.0000 0.23		0.2218	0.3	3688	0.3421		0.2347	7	
	p2	0.23	57 0.00	00	0.1483	0.2	2042	0.1388		0.2540)	
	p3	0.22	18 0.14	83	0.0000	0.1	1513	0.28	343 0.1100)	
	p4	0.36	88 0.20	42	0.1513	0.0	0000	0.2932		0.2210	5	
	p5	0.34	21 0.13	88	0.2843	0.2932 0		0.0000 0.393		0.3921	L	
	p6	0.23	47 0.25	40 0.1100 0.		0.2	2216	0.3921		0.0000)	
	Table : Distance Matrix for Six Points											
С	A spam filtering system has a probability of 0.95 to classify correctly a mail as spam and 0.10 probability of giving false positives. It is estimated that 0.5% of the mails are actual spam mails. Find the probability that, given a mail classified as spam by the system, the mail actually being spam									mail as spam of the mails s spam by the		