Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Program: Electronics Engineering Curriculum Scheme: Rev2016 (CBCGS) Examination: Second Year Semester IV

Course Code: ELX401 Time: 1 hour

Course Name: Applied Mathematics-IV Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

2. Assume suitable data wherever necessary.

Q1.	Find the extremal of $\int_{x_1}^{x_2} \frac{y'^2}{x} dx$
Option A:	$y = c_1 x^3 + c_2$
Option B:	$y = c_1 x^2 + c_2$
Option C:	$y = c_1 x + c_2$
Option D:	$y = c_1 x^3 + c_2 x$
Q2.	The necessary condition for the functional $\int_{x_1}^{x_2} f(x, y, y', y'')$ to be extremum is
Option A:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$
Option B:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$
Option C:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) - \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y'} \right) = 0$
Option D:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) + \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y'} \right) = 0$
Q3.	The curve represents shortest distance between two points is a
Option A:	Straight line
Option B:	Parabola
Option C:	Exponential curve
Option D:	NONE
Q4.	For vector $u=(2,3,0)$ and $v=(4,2,1)$ which of the following holds
Option A:	$ u \cdot v > u \cdot v $
Option B:	$ u \cdot v = u \cdot v $
Option C:	$ u \cdot v < \ u\ \cdot \ v\ $
Option D:	$ u \cdot v < \ u\ \cdot \ u\ $
Q5.	Find the value of k for which $u=(k,k,3)$ and $v=(k,-6,3)$ are orthogonal
Option A:	k=-3
Option B:	k=3
Option C:	k=1
Option D:	k=2
Q6.	If W is subset of 2X 2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and V is the set of all 2X2
	matrices then

Option A:	W is a subspace of V
Option B:	W is not a subspace of V
Option C:	V is a subspace of W
Option D:	Both are same
Q7.	$V = R^2$ with addition and scalar multiplication given by
	$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, 0); k(x_1, y_1) = (kx_1, ky_1)$ is not a vector space as
Option A:	There is no additive identity
Option B:	There is no additive inverse
Option C:	V is not closed under addition
Option D:	V is not closed under multiplication
Q8.	$\lambda = 5$ is the eigenvalue of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. The eigenvector corresponding to
	eigenvalue $\lambda = 5$ is
Option A:	$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$
Option B:	
Option C:	
Option D:	
09	The set of all eigen vectors corresponding to a matrix is always
Q^{j} .	L inearly dependent
Option 71.	
Option B:	Linearly independent
Option C:	Not necessarily dependent
Option D:	Not necessarily independent
Option D.	Not necessarily independent
Q10.	$\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is similar to which of the following matrix?
Option A:	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
Option B:	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
Option C:	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$

Option D:	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	
Q11.	IF A = $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ then eigen values of 3 A ⁻¹ + 2A + I are	
Option A:	-2,10	
Option B:	-4, 8	
Option C:	-5,7	
Option D:	-1,3	
Q12.	If the matrix A has eigen value -1 repeated twice then algebraic multiplicity of A is	
Option A:	-1	
Option B:	0	
Option C:	1	
Option D:	2	
Q13.	If k is a constant, 'E' denotes expectation, 'V' denotes variance then which of the following is true?	
Option A:	E(k) = 0, V(k) = 0	
Option B:	E(k) = k, V(k) = 0	
Option C:	E(k) = 0, V(k) = k	
Option D:	E(k) = k, V(k) = k	
Q14.	What is r -th Moment about origin μ'_r	
Option A:	E(x) ^r	
Option B:	$E(x)^2$	
Option C:	E(x) ³	
Option D:	E(x) ⁰	
Q15.	A die is thrown two times. What is the Probability that the sum neither 8 nor 9	
Option A:	1/9	
Option B:	1⁄4	
Option C:	3⁄4	
Option D:	5/9	
Q16.	If mean is 4 and variance is 3 in Binomial distribution. Find number of trials in experiment	
Option A:	16	
Option B:	12	
Option C:	4	
Option D:	6	
Q17.	A continuous random variable with p.d.f $f(X) = kx^2$, $0 \le x \le 1$ then k is	
Option A:	4	
Option B:	1/4	

Option C:	3
Option D:	1/3
±	
Q18.	Evaluate rank correlation coefficient for the following data:
	X: 12 17 22 27 32
	Y: 113 119 117 115 121
Option A:	0.2
Option B:	0.4
Option C:	0.5
Option D:	0.6
Q19.	The lines of regression are $6Y = 5X + 90$ and $15X=8Y+130$. The coefficient of correlation r=?
Option A:	6/5
Option B:	15/8
Option C:	1.5
Option D:	2.25
Q20.	If r denotes coefficient of correlation then which of the following is true.
Option A:	$-\infty \leq r \leq \infty$
Option B:	$-1 \le r \le 1$
Option C:	$0 \le r \le \infty$
Option D:	r > 1
option D.	
option D.	
Q21.	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-Z^2}$
Q21. Option A:	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-Z^2}$ 1, i
Q21. Option A: Option B:	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-Z^2}$ 1, i 0
Q21. Option A: Option B: Option C:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1
Q21. Option A: Option B: Option C: Option D:	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-Z^2}$ 1, i 0 ±1 ±i
Q21. Option A: Option B: Option C: Option D:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 $\pm i$
Q21. Option A: Option B: Option C: Option D: Q22.	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$?
Q21. Option A: Option B: Option C: Option D: Q22. Option A:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option C: Option C:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i e$
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option C: Option D:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i$
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option A: Option B: Option C: Option C: Option D:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z - 2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i e$
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option C: Option C: Option D: Q23.	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-Z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i e$ $2\pi i$ If $f(z)$ is analytic and $f'(z)$ is continuous at all points inside and on a simple closed curve C, then which of the following statement is correct?
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option C: Option D: Q23. Option A:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z - 2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i e$ $2\pi i$ If $f(z)$ is analytic and $f'(z)$ is continuous at all points inside and on a simple closed curve C, then which of the following statement is correct? $\oint_C f(z) dz = 1$
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option C: Option D: Q23. Option A: Option A: Option B:	Which of the following represents the poles of $f(z) = \frac{z^2 + 1}{1 - Z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i e$ $2\pi i$ If $f(z)$ is analytic and $f'(z)$ is continuous at all points inside and on a simple closed curve C, then which of the following statement is correct? $\oint_C f(z) dz = 1$ $\oint_C f(z) dz = 2\pi i$
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option C: Option A: Q23. Option A: Option B: Option B: Option C:	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-Z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i e$ $2\pi i$ If $f(z)$ is analytic and $f'(z)$ is continuous at all points inside and on a simple closed curve C, then which of the following statement is correct? $\oint_C f(z) dz = 1$ $\oint_C f(z) dz = 2\pi i$ $\oint_C f(z) dz = 0$
Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option C: Option A: Q23. Option A: Option B: Option B: Option C: Option C: Option D:	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-z^2}$ 1, i 0 ± 1 ± 1 $\pm i$ Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$? 0 $2\pi i e^2$ $2\pi i e$ $2\pi i$ If $f(z)$ is analytic and $f'(z)$ is continuous at all points inside and on a simple closed curve C, then which of the following statement is correct? $\oint_C f(z) dz = 1$ $\oint_C f(z) dz = 2\pi i$ $\oint_C f(z) dz = 0$ $\oint_C f(z) dz \neq 0$

Q24.	Which of the following represents the singularities of $f(z) = \frac{z-3}{(z-1)(z-2)}$?
Option A:	z = 3
Option B:	z = 1, 2
Option C:	z = -1, -2
Option D:	z = 0
Q25.	If $z = z_0$ is a simple pole of $f(z)$, then which of the following represents Residue
	of $f(z)$ at $z = z_0$?
Option A:	lim f(z)
	$Z \rightarrow Z_0$
Option B:	$\lim_{z \to z_0} (z - z_0) f(z - z_0)$
Option C:	$\frac{1}{1}$ lim $\frac{d^{m-1}}{2}(z-z)f(z)$
_	$(m-1)! \frac{1111}{z \to z_0} dz^{m-1} (z^2 - z_0) (z^2)$
Option D:	$\lim (z - z_0) f(z)$
	$Z \rightarrow Z_{0}$

University of Mumbai Examination 2020 under Cluster 06 (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 23rd December 2020 to 6th January 2021

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester IV

Course Code: ELX406 and Course Name: Linear Control Systems

Time: 2 hour _____

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	An automatic toaster is a loop control system.
Option A:	Open
Option B:	Closed
Option C:	Partially closed
Option D:	None of the Options
2.	Transfer function of a system is defined as the ratio of output to input in
Option A:	Z-Transform
Option B:	Fourier Transform
Option C:	Laplace Transform
Option D:	Time domain
3.	In signal flow graph, a feedback loop consisting of only one node is called as
Option A:	Non-touching loop
Option B:	Touching loop
Option C:	Self-loop
Option D:	Forward path
4.	If for second order system damping factor is less than one, then system response will be
Option A:	Undamped

Option B:	Overdamped	
Option C:	Critically damped	
Option D:	Under damped	
5.	'Type' of the system means	
Option A:	Number of zeros at origin of an open loop transfer function	
Option B:	Number of zeros at origin of a closed loop transfer function	
Option C:	Number of poles at origin of an open loop transfer function	
Option D:	Number of poles at origin of a closed loop transfer function	
6.	Step signal is a signal whose value	
Option A:	Increases linearly with time	
Option B:	Remains constant with time for time greater than zero	
Option C:	Varies exponentially with time	
Option D:	Decreases linearly with time	
7.	The state of the dynamic system is determined using	
Option A:	State variables	
Option B:	State space	
Option C:	State vector	
Option D:	State scalar	
8.	State space analysis is applicable even if the initial conditions are	
Option A:	Equal	
Option B:	Unequal	
Option C:	Zero	
Option D:	Non-zero	
9.	The minimum number of state variables required to describe an 'n th ' order differential equation are:	
Option A:	n-1	

Option B:	n	
Option C:	n+1	
Option D:	n/2	
10.	State model of a linear system is described by	
Option A:	State equation	
Option B:	Output equation	
Option C:	State equation and output equation	
Option D:	Transfer Function	
11.	The response of the system is as shown in the fig. The system is	
	C(t)	
	AAA Steady state	
	1	
Option A:	Stable	
-		
Option B:	Unstable	
Option B: Option C:	Unstable Marginally stable	
Option B: Option C: Option D:	Unstable Marginally stable Critically stable	
Option B: Option C: Option D:	Unstable Marginally stable Critically stable	
Option B: Option C: Option D: 12.	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to	
Option B: Option C: Option D: 12. Option A:	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to Number of open loop poles	
Option B: Option C: Option D: 12. Option A: Option B:	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to Number of open loop poles Number of open loop zeros	
Option B: Option C: Option D: 12. Option A: Option B: Option C:	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to Number of open loop poles Number of open loop zeros Open loop poles - Open loop zeros	
Option B: Option C: Option D: 12. Option A: Option B: Option C: Option D:	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to Number of open loop poles Number of open loop zeros Open loop poles - Open loop zeros Open loop poles + Open loop zeros	
Option B: Option C: Option D: 12. Option A: Option B: Option C: Option D:	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to Number of open loop poles Number of open loop zeros Open loop poles - Open loop zeros Open loop poles + Open loop zeros	
Option B: Option C: Option D: 12. Option A: Option B: Option C: Option D: 13.	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to Number of open loop poles Number of open loop zeros Open loop poles - Open loop zeros Open loop poles + Open loop zeros In Routh's stability criterion, the number of sign changes in the first column of Routh's array indicates	
Option B: Option C: Option D: 12. Option A: Option B: Option C: Option D: 13. Option A:	Unstable Marginally stable Critically stable If number of open loop poles are greater than the number of open loop zeros than number of branches in root locus plot will be equal to Number of open loop poles Number of open loop zeros Open loop poles - Open loop zeros Open loop poles + Open loop zeros In Routh's stability criterion, the number of sign changes in the first column of Routh's array indicates Number of roots lying on the imaginary axis	

Option C:	Number of roots lying in the right half of the s-plane
Option D:	None of the Options
14.	Cut off frequency is the frequency at which the magnitude of the closed loop response is from its zero frequency value.
Option A:	-3dB
Option B:	+3dB
Option C:	-1dB
Option D:	+1dB
15.	To apply Nyquist stability criterion, polar plot ofis used
Option A:	Characteristic equation
Option B:	Closed loop transfer function
Option C:	Open loop transfer function
Option D:	State model
16.	A system is said to be unstable when gain crossover frequency is the phase crossover frequency
Option A:	Less than
Option B:	Greater than
Option C:	Equal to
Option D:	None of the Options
17.	Frequency response of a system is defined as
Option A:	Steady state response to step input
Option B:	Steady state response to sinusoidal input
Option C:	Steady state response to ramp input
Option D:	Steady state response to impulse function
18.	MRAC stands for
Option A:	Model Reference Advance Control

Option B:	Model Robust Adaptive Control
Option C:	Model Reference Adaptive Control
Option D:	Model Robust Advance Control
19.	Which of the following is an input to the controller?
Option A:	Servo signal
Option B:	Reference input
Option C:	Sensed signal
Option D:	Error signal
20.	Lead compensator the bandwidth of the closed loop system.
Option A:	Increases
Option B:	Decreases
Option C:	Does not change
Option D:	None of the Options

Q2	
(20 Marks Each)	
A	Solve any Two5 marks each
i.	State and prove the properties of state transition matrix.
ii.	Define the steady state error and derive its expression for a simple closed loop system.
iii.	Comment on the stability of the system with characteristic equation $s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16s + 16 = 0$ using Routh's criterion.
В	Solve any One10 marks each
i.	Sketch the root locus for the system with open loop transfer function as: G(s)H(s)=k/s(s+5)(s+10)
ii.	Check the controllability and observability for the system:

	$\dot{x} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix} x$
Q3	
(20 Marks Each)	
А	Solve any Two5 marks each
i.	Using Mason's gain formula, determine the transfer function $C(s)/R(s)$ for the signal flow graph shown in fig.
	$\begin{array}{c} \begin{array}{c} -H_2 \\ \hline \\ R(s) & 1 \\ \hline \\ G_1 \\ \hline \\ \\ -H_3 \\ \hline \\ -H_4 \end{array}$
ii.	A second order system has peak overshoot of 50% and period of oscillations of 0.2 sec in step response. Determine i) Resonant peak and ii) Resonant frequency
iii.	Write a short note on PID controllers.
В	Solve any One10 marks each
i.	Sketch the polar plot for the system with open loop transfer function as $G(s)H(s)=12/s(s+1)(s+2)$
ii.	Determine the transfer function $C(s)/R(s)$ using block diagram reduction technique for the block diagram shown in the fig. $R(s) \bigoplus G_1 \bigoplus G_2 $

Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX402 Course Name: Electronic Devices and Circuits II

Time: 1hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

2. Assume suitable data wherever necessary.

Q1.	Which of the following is not an improvement if negative feedback is introduced in a CE amplifier circuit?
Option A:	Higher input impedance
Option B:	Better stabilized voltage gain
Option C:	Improved frequency response
Option D:	Improved voltage gain
Q2.	Determine the voltage gain with feedback for a voltage-series feedback having A = -1000 , Rin = 175 k Ω , Ro = 2.5 k Ω , and a feedback of β = -0.25 .
Option A:	3.85
Option B:	-3.85
Option C:	-9.09
Option D:	9.09
Q3.	In a RC phase-shift oscillator, the gain of the amplifier stage must be greater than to satisfy Barkhausen's criteria.
Option A:	19
Option B:	29
Option C:	30
Option D:	1
Q4.	The frequency of a Wien bridge oscillator is dependent on the following components?
Option A:	R1 and C1
Option B:	C1 and C2
Option C:	R1, R2, C1, and C2
Option D:	R1 and R2
Q5.	An amplifier incorporates negative feedback using voltage-shunt feedback connection. This feedback will result in
Option A:	Increased input impedance and increased output impedance
Option B:	Increased input impedance and decreased output impedance
Option C:	Decreased input impedance and increased output impedance

Q6. Which of the following capacitances does not affect the low frequency response of an RC coupled CE amplifier? Option A: Input coupling capacitance Option D: AC bypass capacitance Option D: Millers capacitance Option A: Input coupling capacitance Option D: Millers capacitance Option A: 133 KHz Option A: 133 KHz Option D: 1.33 KHz Option D: 1.33 KHz Option D: 1.33 KHz Option D: 1.33 KHz Option B: Requency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Option D:	Decreased input impedance and decreased output impedance
Q6. Which of the following capacitances does not affect the low frequency response of an RC coupled CE amplifier? Option A: Input coupling capacitance Option D: Millers capacitance Option D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option D: 133 KHz Option D: 133 KHz Option D: 133 KHz Option D: 133 KHz Option A: 133 KHz Option A: 133 KHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option B: Be worse than that of a single stage Option A: Stoddb Option B: Be worse than that of a single stage Option C: Stodb <tr< td=""><td></td><td></td></tr<>		
Option A: Input coupling capacitance Option D: AC bypass capacitance Option D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 µF. Determine the approximate lower cutoff frequency. Option A: 133 KHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Q6.	Which of the following capacitances does not affect the low frequency response of an RC coupled CE amplifier?
Option B: AC bypass capacitance Option D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 µF. Determine the approximate lower cutoff frequency. Option A: 133 KHz Option D: 1.33 kHz Option C: 1.33 kHz Option D: 133 kHz Option D: 133 kHz Option D: 133 kHz Option A: Critical frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Option A:	Input coupling capacitance
Option C: output coupling capacitance OPTION D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 KHz Option D: 133 KHz Option D: 133 KHz Option D: 133 KHz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Option B:	AC bypass capacitance
Option D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 KHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option A: 550db Option B: 550db Option D: 500db Option B: 500db Option B: 500db Option B: 500db Option B: Ecctr	Option C:	output coupling capacitance
Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 KHz Option D: 1.33 kHz Option C: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option D: Beta cut-off frequency Option C: Alpha cut-off frequency Option C: How cut-off frequency Option C: Hom cut-off frequency Option A: Everall bandwidth of two identical voltage amplifiers connected in cascade Will	Option D:	Millers capacitance
Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option N: 133 KHz Option D: 13.3 kHz Option D: 13.3 kHz Option D: 13.3 kHz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Q9. The frequency Option A: Critical frequency Option C: Alpha cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option A: The overall bandwidth of two identical voltage amplifiers connected in cascade Will		
Option A: 133 KHz Option B: 1.33 kHz Option C: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Q7.	An amplifier has a input impedance of 1.2 k Ω . The input coupling capacitor is 1 μ F.
Option B: 1.33 kHz Option D: 13.3 kHz Option D: 13.3 kHz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option A: The overall bandwidth of two identical voltage amplifiers connected in cascade Will	Option A.	133 KHz
Option C: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will	Option B:	1 33 kHz
Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better that the same as that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option A: 5500db Option B: 550db Option B: 550db Option C: 55db Option D: 5000db Option A: Electrical size of the coupling capacitor Option A: Electrical size of the coupling capacitor Option B:	Option C:	13.3 kHz
Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better if stage gain in low and worse if stage gain is high Option D: Be better if stage gain in low and worse if stage gain is high Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option A: S500db Option A: S500db Option A: S500db Option B: S500db Option C: S5db Option D: S000db Option B: S000db Option C: S5db Option D: S000db Option B: Low efficiency Option A: Electrical size of the coupling capacitor	Option D:	133 Hz
Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option A: Stodb Option B: Be worse than that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option D: 500db Option D: 500db Option D: 500db Option B: 500db Option B: 500db Option D: 500db Option D: 100db <t< td=""><td>option 21</td><td></td></t<>	option 21	
voltage amplifier goes to 1 (one) is called as	08.	The frequency at which the magnitude of the short circuit current gain of RC coupled
Option A: Critical frequency Option B: Beta cut-off frequency Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will		voltage amplifier goes to 1 (one) is called as
Option B: Beta cut-off frequency Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will	Option A:	Critical frequency
Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Remain the same as that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 550db Option D: 550db Option D: 55db Option D: 500db Option D: 500db Option D: 500db Option C: 55db Option C: 55db Option D: 500db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of	Option B:	Beta cut-off frequency
Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 550db Option D: 550db Option D: 550db Option D: 550db Option D: 500db Option D: 500db Option B: 55db Option D: 500db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of	Option C:	Alpha cut-off frequency
Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 550db Option D: 550db Option D: 550db Option D: 500db Option D: 500db Option D: 500db Option A: 550db Option D: 500db Option D: 500db Option D: 500db Option A: 510db Option B: 500db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option D: There is considerable power loss Option D: There is and of a multistage amplifier is less than	Option D:	Unity-gain frequency
Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option D: 550db Option D: 550db Option D: 500db Option B: 550db Option D: 500db Option B: 550db Option B: 500db Option B: 500db Option D: 500db Option B: 500db Option B: Low efficiency Option B: Low efficiency Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		
Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option D: 550db Option D: 550db Option D: 500db Option B: 550db Option D: 500db Option D: 500db Option B: 500db Option B: Coupling is not used in amplifiers to amplify extremely low frequencies, because of	Q9.	The overall bandwidth of two identical voltage amplifiers connected in cascade Will
Option B:Be worse than that of a single stageOption C:Remain the same as that of a single stageOption D:Be better than that of a single stageQ10.If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain?Option A:5500dbOption B:550dbOption D:550dbOption D:500dbQ11.RC coupling is not used in amplifiers to amplify extremely low frequencies, because ofQ11.Electrical size of the coupling capacitorOption B:Low efficiencyOption D:There is considerable power lossOption D:There is a hum in the outputQ12.The overall gain of a multistage amplifier is less than the product of the gains of individual stages due toOption A:The use of many capacitors	Option A:	Be better if stage gain in low and worse if stage gain is high
Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option D: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option D: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option B:	Be worse than that of a single stage
Option D:Be better than that of a single stageQ10.If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain?Option A:5500dbOption B:550dbOption C:55dbOption D:5000dbOption A:6Q11.RC coupling is not used in amplifiers to amplify extremely low frequencies, because of	Option C:	Remain the same as that of a single stage
Q10.If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain?Option A:5500dbOption B:550dbOption C:55dbOption D:5000dbQ11.RC coupling is not used in amplifiers to amplify extremely low frequencies, because of	Option D:	Be better than that of a single stage
Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option D: There is considerable power loss Option D: The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors		
Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option D: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Q10.	If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain?
Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option A:	5500db
Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option D: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option B:	550db
Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option C:	55db
Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option D:	5000db
Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	1	
of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Q11.	RC coupling is not used in amplifiers to amplify extremely low frequencies, because
Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	-	of
Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option A:	Electrical size of the coupling capacitor
Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option B:	Low efficiency
Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option C:	There is considerable power loss
Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	Option D:	There is a hum in the output
Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to Option A: The use of many capacitors	`	*
Option A: The use of many capacitors	Q12.	The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to
	Option A:	The use of many capacitors

Option C: The use of many transistors Option D: Power loss in the coupling device Q13.
Option D: Power loss in the coupling device Q13.
Q13. coupling is used to amplify d.c. signal in a multistage amplifier. Option A: Transformer Option B: RC Option D: Impedance Option D: Direct Q14. A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to Option A: 400 Option D: 10000 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option B: Dual Input Unbalanced Output Option C: Dual Input Unbalanced Output Option C: Dual Input Unbalanced Output Option A: Single remain amplifier? Option A: Constant current bias Option A: Diode in parallel with Re Option C: Resistor in series with Re Option A: Kidar current source is used Option A: to get high value of CMRR Option B: Diode in parallel with Re Option C: Resistor in series with Re Option B:
Q13. coupling is used to amplify d.c. signal in a multistage amplifier. Option A: Transformer Option B: RC Option C: Impedance Option D: Direct Q14. A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to Option A: 400 Option B: 80 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option A: Songle the value of CMRR, which circuit is used to replace the emitter resistance Rt in differential amplifier? Option B: Doal Input Unbalanced Output Option A: Constant current bias Option B: Diode in parallel with Re Option B: Diode in parallel with Re Option D: Resistor in series with Re Option
Option A:TransformerOption B:RCOption C:ImpedanceOption D:DirectQ14.A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal toOption A:400Option B:80Option C:40Option D:10000Q15.If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured asOption A:Single Input Balanced OutputOption C:Dual Input Unbalanced OutputOption D:Dual Input Unbalanced OutputOption A:Constant current biasOption A:Constant current biasOption B:Diode in parallel with ReOption D:Resistor in series with ReOption D:Resistor in series with ReOption A:to get high value of CMRROption B:to get high value of CMRR
Option B: RC Option C: Impedance Option D: Direct Q14. A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to Option A: 400 Option D: 10000 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option B: Dual Input Unbalanced Output Option B: Dual Input Of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier? Option B: Diode in parallel with Re Option D: Resistor in series with Re Option D: Resistor in series with Re Option A: to get high value of CMRR Option B: to ge
Option C: Impedance Option D: Direct Q14. A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to Option A: 400 Option D: 80 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option D: Dual Input Unbalanced Output Option A: To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier? Option B: Diode in parallel with Re Option C: Resistor in series with Re Option D: Resistor in series with Re Option B: To get high value of CMRR Option B: to get high value of CMRR Optio
Option D: Direct Q14. A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to Option A: 400 Option B: 80 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option B: Dual Input Unbalanced Output Option C: Dual Input Balanced Output Option D: Dual Input Balanced Output Option D: Dual Input Balanced Output Option D: Dual Input Unbalanced Output Option A: Single Input Balanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Q16. To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier? Option B: Diode in parallel with Re Option D: Deide in parallel with Re Option D: Resistor in series with Re Option D: Resistor in series with Re <tr< td=""></tr<>
Q14. A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to Option A: 400 Option B: 80 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option D: Dual Input Unbalanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option B: Dual Input Unbalanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option A: Constant current bias Option B: Diode in parallel with Re Option D: Resistor in parallel with Re Option D: Resistor in series with Re Option A: to get high value of CMRR Option B: to get high value of CM
Q14. A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to Option A: 400 Option B: 80 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option D: Dual Input Unbalanced Output Option A: Single in differential amplifier? Option A: Constant current bias Option B: Diode in parallel with Re Option C: Resistor in parallel with Re Option D: Resistor in series with Re Q17. A widlar current source is used Option A: to get high value of CMRR Option B: to get high value of CMRR
Option A: 400 Option B: 80 Option C: 40 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Balanced Output Option D: Dual Input Balanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Balanced Output Option B: Dual Input Unbalanced Output Q16. To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier? Option B: Diode in parallel with Re Option D: Resistor in series with Re Q17. A widlar current source is used Option A: to get high value of CMRR Option B: to get low voltage gain
Option B:80Option C:40Option D:10000Q15.If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured asOption A:Single Input Balanced OutputOption B:Dual Input Unbalanced OutputOption D:Dual Input Balanced OutputOption D:Dual Input Unbalanced OutputOption B:Dual Input Unbalanced OutputOption B:Dual Input Unbalanced OutputOption B:Dual Input Unbalanced OutputOption B:Dual Input Unbalanced OutputOption D:Dual Input Unbalanced OutputOption D:Dual Input Unbalanced OutputOption D:Dual Input Unbalanced OutputQ16.To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption B:Diode in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get high value of CMRROption B:to get low voltage gain
Option C: 40 Option D: 10000 Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option B: Dual Input Unbalanced Output Option D: Dual Input Balanced Output Option D: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option B: Dual Input Unbalanced Output Option A: To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier? Option B: Diode in parallel with Re Option D: Resistor in parallel with Re Option D: Resistor in series with Re Q17. A widlar current source is used Option A: to get high value of CMRR Option B: to get high value of CMRR Option B: to get high value of CMRR
Option D:10000Q15.If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured asOption A:Single Input Balanced OutputOption B:Dual Input Unbalanced OutputOption C:Dual Input Balanced OutputOption D:Dual Input Unbalanced OutputOption B:Dual Input Unbalanced OutputOption C:Dual Input Unbalanced OutputOption B:Dual Input Unbalanced OutputOption B:Dual Input Unbalanced OutputOption B:Dick constant current biasOption A:Constant current biasOption D:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get high value of CMRROption B:to get low voltage gain
Q15. If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured as Option A: Single Input Balanced Output Option B: Dual Input Unbalanced Output Option C: Dual Input Unbalanced Output Option D: Dual Input Unbalanced Output Option A: To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier? Option A: Constant current bias Option D: Dide in parallel with Re Option D: Resistor in series with Re Q17. A widlar current source is used Option A: to get high value of CMRR Option B: to get high value of CMRR
Q15.If output is measured between two collectors of transistors, then the Differential amplifier with two input signal is said to be configured asOption A:Single Input Balanced OutputOption B:Dual Input Unbalanced OutputOption C:Dual Input Balanced OutputOption D:Dual Input Unbalanced OutputOption A:To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption C:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get low voltage gain
Option A:Single Input Balanced OutputOption B:Dual Input Unbalanced OutputOption C:Dual Input Balanced OutputOption D:Dual Input Unbalanced OutputQ16.To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption B:Diode in parallel with ReOption D:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get high value of CMRR
Option B:Dual Input Unbalanced OutputOption C:Dual Input Balanced OutputOption D:Dual Input Unbalanced OutputQ16.To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption B:Diode in parallel with ReOption D:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get high value of CMRR
Option C:Dual Input Balanced OutputOption D:Dual Input Unbalanced OutputQ16.To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption B:Diode in parallel with ReOption C:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get high value of CMRR
Option D:Dual Input Unbalanced OutputQ16.To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption B:Diode in parallel with ReOption C:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get high value of CMRR
Q16.To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption B:Diode in parallel with ReOption C:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get how voltage gain
Q16.To increase the value of CMRR, which circuit is used to replace the emitter resistance RE in differential amplifier?Option A:Constant current biasOption B:Diode in parallel with ReOption C:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get how voltage gain
Option A:Constant current biasOption B:Diode in parallel with ReOption C:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get low voltage gain
Option B:Diode in parallel with ReOption C:Resistor in parallel with ReOption D:Resistor in series with ReQ17.A widlar current source is usedOption A:to get high value of CMRROption B:to get low voltage gain
Option C: Resistor in parallel with Re Option D: Resistor in series with Re Q17. A widlar current source is used Option A: to get high value of CMRR Option B: to get low voltage gain
Option D: Resistor in series with Re Q17. A widlar current source is used Option A: to get high value of CMRR Option B: to get low voltage gain
Q17. A widlar current source is used Option A: to get high value of CMRR Option B: to get low voltage gain
Q17.A widlar current source is usedOption A:to get high value of CMRROption B:to get low voltage gain
Option A: to get high value of CMRR Option B: to get low voltage gain
Option B: to get low voltage gain
Option C: to get low value of current
Option D: to get high value of Output
Q18. CE amplifier is used as a large signal class A amplifier because
Option A: it has very high input impedance
Option B: it has very high output impedance
Option C: it is very much stable
Option D: it has very high voltage gain
Q19. The DC operating (Q) point in class B amplifier lies in region.
Option A: Cut off
Option B: Active
Option C: Between saturation and active

Option D:	Saturation
Q20.	If DC power for a Class A amplifier is 1000W and AC power is 300W, what is its efficiency?
Option A:	30%
Option B:	50%
Option C:	20%
Option D:	75%
Q21.	Cross over distortion occurs in power amplifiers because of the following:
Option A:	due to resistors
Option B:	due to Inductors
Option C:	due to Capacitors
Option D:	switching of transistors after every half cycle
Q22.	The structure of the IGBT is a
Option A:	P-N-P-N structure connected by a MOS gate
Option B:	N-P-N-P structure connected by a MOS gate
Option C:	P-N-P structure connected by a MOS gate
Option D:	N-N-P-P structure connected by a MOS gate
Q23.	When a reverse bias voltage exceeding the breakdown voltage is applied to an
	IMPATT diode, it results in:
Option A:	thermal runaway
Option B:	avalanche multiplication
Option C:	break down of depletion region
Option D:	high reverse saturation current
Q24.	The negative resistance region in UJT characteristics lies between
Option A:	after valley point
Option B:	between peak and valley points
Option C:	before peak point
Option D:	in all regions
025	The control element of an SCP is
Q_{23}	
Option A:	Anode supply
Option B:	Anode
Option C:	Gate
Option D:	Catnode

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX403 Course Name: Microprocessors and Applications.

Time: 1 hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

2. Assume suitable data wherever necessary.

Q1	8086 microprocessor has bit Arithmetic Logic Unit.
Option A:	64
Option B:	32
Option C:	8
Option D:	16
Q2	8086 microprocessor has byte pre-fetch queue in bus interface unit.
Option A:	6
Option B:	4
Option C:	2
Option D:	3
Q3	8086 microprocessor can access segments at a time.
Option A:	1
Option B:	4
Option C:	3
Option D:	2
Q4	For which addressing mode, the offset address of the operands is directly specified in
	the instruction?
Option A:	Register
Option B:	Implied
Option C:	Direct
Option D:	Immediate
Q5	string instruction is used to load AL/AX register with a byte / word
	from data segment.
Option A:	LODS
Option B:	STOS
Option C:	CMPS
Option D:	SCAS

Q6	Which instruction forms 2's complement of the specified destination in the
_	instruction?
Option A:	NOT
Option B:	NEG
Option C:	СМР
Option D:	DAA
-	
Q7	The end of a macro can be represented bydirective.
Option A:	END
Option B:	ENDS
Option C:	ENDP
Option D:	ENDM
Q8	Which interrupt occurs whenever there is division error?
Option A:	INT 0
Option B:	INT 2
Option C:	INT 3
Option D:	INT 4
1	
Q9	In 8086 microprocessor the total size of Interrupt vector table is
Option A:	1KB
Option B:	2KB
Option C:	128 KB
Option D:	256KB
Q10	If MN/ \overline{MX} is low then 8086 operates inmode.
Option A:	Minimum
Option B:	Maximum
Option C:	Multiprocessor
Option D:	Single processor
-	
Q11	In 8086 maximum mode, bus controller is used to generate memory and I/O control signals
Option A:	8286
Option B:	8288
Option C:	8284
Option D:	8087
option D.	
Q12	is multiprocessor mode of 8086.
Option A:	Minimum mode
Option B:	Maximum mode
Option C:	Master mode
Option D:	Master-Slave mode
· ·	
Q13	<i>DEN</i> pin of 8086 is

Option A:	Direct Enable
Option B:	Data Entered
Option C:	Data Enable
Option D:	Data Encoding
Q14	8255 is known as
Option A:	Programmable Interrupt Controller
Option B:	Programmable Peripheral Interface
Option C:	Direct Memory Access Controller
Option D:	Programmable Interval Timer
Q15	In the I/O mode, the 8255 ports work as
Option A:	reset pins
Option B:	set pins
Option C:	programmable I/O ports
Option D:	only output ports
Q16	The number of vector interrupts provided by 8259 in a cascade mode is
Option A:	8
Option B:	16
Option C:	32
Option D:	64
Q17	In 8259, the register that stores all the interrupt requests in it in order to serve them
Option A:	Interrupt Request Register
Option B:	In-Service Register
Option C:	Priority resolver
Option D:	Interrupt Mask Register
Q18	The pin is used by DMAC to request the microprocessor to release the
	system bus.
Option A:	HLDA
Option B:	HRQ
Option C:	ADSTB
Option D:	DACK
Q19	How many modes of data transfer 8237 has?
Option A:	2
Option B:	4
Option C:	6
Option D:	8
-	
Q20	Pentium processor has pipelines.
Option A:	Two
Q19 Option A: Option B: Option C: Option D: Q20	How many modes of data transfer 8237 has? 2 4 6 8 Pentium processor has pipelines.

Option B:	Three
Option C:	Four
Option D:	Six
Q21	The instruction cache of Pentium processor is
Option A:	read-only cache
Option B:	write only cache
Option C:	read-write cache
Option D:	write back cache
Q22	In Pentium's super scalar architecture, the number of instructions that are executed
	per clock cycle is
Option A:	0
Option B:	
Option C:	1.5
Option D:	2
Q23	The unit that is used to implement the multiple branch prediction in Pentium is
	. 1 %
Option A:	
Option B:	bus interface unit
Option C:	branch target buffer
Option D:	branch instruction register
001	
Q24	The stage in which the CPU fetches the instructions from the instruction cache in
	super-scalar organization is
Option A:	Prefetch stage
Option B:	D1 (first decode) stage
Option C:	D2 (second decode) stage
Option D:	Final stage
Q25	When branch prediction is not correct and if the branch is executed in the U-pipeline
	then cycle penalty incurred is
Option A:	A cycle penalty is incurred
Option P:	4 cycle penalty is incurred
Option D:	1 evolo populty is incurred
Option C:	2 evide penalty is incurred
Option D:	2 cycle penalty is incurred

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX404 Course Name: Digital System Design

Time: 1 hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

2. Assume suitable data wherever necessary.

Q1.	A is type synchronous sequential circuit whose output
	values are determined only by its present state.
Option A:	Mealy Machine
Option B:	Moore Machine
Option C:	Asynchronous machine
Option D:	Finite State Machine
Q2.	Which of the following is not basic component of ASM chart?
Option A:	State box
Option B:	Transition Table
Option C:	Decision box
Option D:	Conditional output box
Q3.	MSI Chip IC74169 is the
Option A:	Synchronous 4 bit UP/DOWN Binary counter
Option B:	Synchronous Decade UP/DOWN Binary counter
Option C:	Synchronous 4 bit UP Binary counter
Option D:	Asynchronous 4 bit UP/DOWN Binary counter
Q4.	Which of the following is type of signal assignment operator?
Option A:	:=
Option B:	<=
Option C:	==
Option D:	!=
Q5.	Which of the following line is correct for detecting rising edge of a clock?
Option A:	if (clk'EVENT AND clk = '0')
Option B:	if (clk'EVENT AND clk = '1')
Option C:	if (clk 'EVENT OR $clk = '0'$)
Option D:	if (clk'EVENT OR clk = '1')
Q6.	CPLD Stands for
Option A:	Common Programmable Logic Device

Option B:	Complex Programmable Level Device
Option C:	Complex Programmable Logic Device
Option D:	Complete Programmable Logic Device
Q7.	is not a type state reduction technique.
Option A:	Inspection
Option B:	K-map
Option C:	Implication Chart
Option D:	Partition
<u>Q8.</u>	box indicates the effect of input on control subsystem.
Option A:	State Box
Option B:	Data Box
Option C:	Control Box
Option D:	Decision Box
00	
Q9.	IC /493 consist of
Option A:	Mod 2 counter and Mod 5 Counter
Option B:	Unly Mod 8 counter
Option C:	Mod 2 and Mod 8 Counter
Option D:	Mod 2 and Mod 8 Counter
010	In VIDI DDOCESS is a statement
Q_{10}	Sequential
Option B:	Concurrent
Option C:	Conditional
Option D:	Functional
Option D.	
Q11.	Identify type of library specified in following statement.
Option A:	Use
Option B:	IEEE
Option C [.]	all
Option D:	std logic 1164
option Di	
012.	In both OR array and AND arrays are programmable.
Option A:	Programmable logic array
Option B:	Programmable array logic
Option C:	Programmable level array
Option D:	Programmable Adder Logic
• •	
Q13.	How many state variables required to represent 3 states?
Option A:	2
Option B:	1
Option C:	3
Option D:	4

Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

014	How many flipflops required to design Moore machine sequence detector for
X ¹	sequence "1011"
Option A:	3
Option B:	2
Option C:	4
Option D:	5
-	
Q15.	ASM Chart has
Option A:	4 exits
Option B:	3 exits
Option C:	2 exits
Option D:	Any number of exits
-	•
Q16.	Condition: IC74163, CLR=ENP=ENT=1, LD=0, ABCD=1010, What is
	Output at pin QD, QC,QB,QA
Option A:	1010
Option B:	0101
Option C:	1100
Option D:	0010
Q17.	The architecture describes digital circuit implemented by
	modeling.
	ARCHITECTURE my_arch OF my_design IS
	BEGIN
	$yl \ll a \text{ xor } b \text{ xor } c;$
	$y^2 \le (a \text{ and } b) \text{ or } (a \text{ and } c) \text{ or } (b \text{ and } c);$
	END my_arch;
Option A:	Half adder, behavioral
Option B:	Full adder, benavioral
Option C:	Half adder, dataflow
Option D:	Full adder, dataflow
019	What kind of logic is represented by the given code?
Q10.	APCHITECTUPE my function of my logic is
	BEGIN
	$Y \leq x SRL 2$
	END my function:
Option A:	Divide by 2
Option B:	Divide by 4
Option C:	Multiply by 2
Option D:	Multiply by 4
• • • • • • • • • • • • • • • • • • •	
Q19.	FPGA consist of CLB's, CLB uses to generate
Option A:	LUT, input
Option B:	Look up table, output
Option C:	input, output
Option D:	LUT, LUT

Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Q20.	Write state table for given state diagram.
	0/0 B
	0/0 1/1 1/0
	0/0
	$\left(\begin{array}{c} E \end{array}\right) = \frac{1}{1/0} \left(\begin{array}{c} D \end{array}\right)$
Option A:	Present Next State Output State
	X=0 X=1 X=0 X=1
	A A B O O B A C O O
Option B:	Present Next State Output
	State X=0 X=1 X=1
	A B B 1 0
Option C:	
Option C.	State Output
	C D C 0 1 D B E 0 0
	E A C 0 1
Option D:	Present Next State Output
	State X=0 X=1 X=0 X=1
	D A E O O E A C O 1
Q21.	What logic circuit is described by the following code?
	ARCHITECUTRE my_circuit OF my_logic IS
	BEGIN
	WITH ab SELECT
	$Y \le x0$ WHEN "00';
	XI WHEN UI; x^2 WHEN "10".
	x3 WHEN "11":
	END my circuit;
Option A:	Multiplexer
Option B:	Demultiplexer
Option C:	Decoder
Option D:	Encoder

Q22.	Identify type of counter design using IC74163.
	CLOCK
Option A:	MOD 11 Counter with Count sequence from 5,6,7,8,9,10,11,12,13,14,15,5-15.
Option B:	MOD 11 Counter with Count sequence from 0,1,2,3,4,5,6,7,8,9,10,11.
Option C:	MOD 11 Counter with Count sequence from 0,1,2,3,4,5,6,7,8,9,10
Option D:	MOD 11 Counter with Count sequence from 5,6,7,8,9,10,11,12,13,14.
Q23. Option A: Option B: Option C: Option D:	What is Characteristics equation of D flipflop? $Q_n = Q_{n+1}$ $Q_{n+1} = Q_n$ $Q_{n+1} = D_n$ $Q_n = \overline{Q_{n+1}}$
Q24.	Identify type of machine and the sequence? $ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
Option A:	Mealy machine, 101
Option B:	Moore machine, 101
Option C:	Mealy machine, 1010
Option D:	Moore machine, 1010
Q25.	IC74194, MR=1, S0=1, S1=0, DSL=X, DSR=1, Initial output is

	$Q0,Q1,Q2,Q3 = 0\ 0\ 0\ 0$, What should be the output after 3 rd clock pulse
	applied
Option A:	1000
Option B:	1100
Option C:	1110
Option D:	1111

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX405	Course Name: Principles of Communication Engineering

Time: 1 hour

Max. Marks: 50

Note:

1. All Questions are compulsory and carry equal marks.

2. Assume suitable data wherever necessary.

Q1.	In a communication system, where noise get added?
Option A:	During regeneration of signal
Option B:	At transmitting antenna
Option C:	At the receiving end
Option D:	In the channel
Q2.	Frequencies in the UHF range normally propagate by means of
Option A:	Surface waves
Option B:	Space waves
Option C:	Ground waves
Option D:	Sky waves
Q3.	In overmodulation, modulation index (m) is-
Option A:	1
Option B:	Less than 1
Option C:	Greater than 1
Option D:	In between 0 to 1
Q4.	The noise due to random behavior of charge carriers is called as-
Option A:	Flicker Noise
Option B:	Shot Noise
Option C:	Industrial Noise
Option D:	Partition Noise
Q5.	The most commonly used filters in SSB generation are-
Option A:	Mechanical
Option B:	RC
Option C:	LC
Option D:	Low-pass
-	
Q6.	Vestigial sideband is most commonly used in-
Option A:	Radio transmission

Option B:	Radio Propagation
Option C:	Television transmission
Option D:	Telephony
Q7.	The peak voltage of an AM signal goes from Emax to Emin. The modulation index,
	m, is:
Option A:	(Emax – Emin) / (Emax + Emin)
Option B:	(Emax + Emin) / (Emax – Emin)
Option C:	Emax / Emin
Option D:	Emin / Emax
Q8.	The equation for full-carrier AM is:
Option A:	$(E_c x E_m) x \sin(\omega_m t) x \sin(\omega_c t)$
Option B:	$(E_c + E_m) x \sin(\omega_c t)$
Option C:	$(E_c + E_m) x \sin(\omega_m t) + \sin(\omega_c t)$
Option D:	$(E_c + E_m \sin(\omega_m t)) \propto \sin(\omega_c t)$
Q9.	The "envelope" of an AM signal is due to:
Option A:	The baseband signal
Option B:	The modulated signal
Option C:	The carrier signal
Option D:	The amplitude signal
Q10.	The relation between bandwidth B, modulating frequency fm and frequency
	deviation Δf for a sinusoidally modulated FM signal is
Option A:	$\mathbf{B} = \mathbf{fm} - \Delta \mathbf{f}'$
Option B:	$B = 2(fm - \Delta f)$
Option C:	$\mathbf{B} = 2(\Delta \mathbf{f} + \mathbf{fm})$
Option D:	$B = \Delta f + fm$
011	
QII.	The FM broadcast band is from-
Option A:	550 to 1600 kHz
Option B:	88 to 108 MHz
Option C:	88 to 108 kHz
Option D:	1600 kHz to 59.75 MHz
0.16	
Q12.	Indicate the false statement regarding the Armstrong modulation system-
Option A:	Equalization is unnecessary
Option B:	The system is basically phase, not frequency modulation,
Option C:	Frequency multiplication must be used
Option D:	AFC is not needed, as crystal oscillator is used.
012	
Q13.	A pre-emphasis circuit provides extra noise immunity by-
Option A:	Boosting the bass frequencies
Option B:	Pre amplifying the whole audio band
Option C:	Converting the phase modulation to FM
Option D:	Amplifying the higher audio frequencies

Q14.	In a broadcast superheterodyne receiver, the
Option A:	Local oscillator frequency is normally double the IF
Option B:	Local oscillator operates below the signal frequency
Option C:	Mixer input must be tuned to the signal frequency
Option D:	RF amplifier normally works at 455 kHz above the carrier frequency
Q15.	One of the main functions of the RF amplifier in a superheterodyne receiver is to-
Option A:	Provide improved tracking
Option B:	Increase the tuning range of the receiver
Option C:	Improve the rejection of the image frequency
Option D:	Increase the tuning range of the receiver
Q16.	A superheterodyne receiver with an IF of 450 kHz is tuned to a signal at 1200 kHz.
	The image frequency is
Option A:	2100 kHz
Option B:	900 kHz
Option C:	800 kHz
Option D:	750 kHz
Q17.	Sensitivity is defined as-
Option A:	Ability to reject unwanted signals
Option B:	Ability to convert incoming signal into Image Frequency
Option C:	Ability to reject noise
Option D:	Ability of receiver to amplify weak signals
Q18.	A band-limited signal with a maximum frequency of 5 KHz to be sampled.
	According to the sampling theorem, the sampling frequency which is not valid is-
Option A:	12 KHz
Option B:	5 KHz
Option C:	15 KHz
Option D:	20 KHz
Q19.	Which of the following pulse modulation systems is analog?
Option A:	PWM
Option B:	Differential PCM
Option C:	PCM
Option D:	Delta
Q20.	A distorted signal of frequency fm is recovered from a sampled signal if the sampling
	frequency fs is-
Option A:	fs=2fm
Option B:	fs>2fm
Option C.	fs<2fm
Option D:	$fs \ge 2fm$
option D.	

Q21.	Calculate the minimum sampling rate to avoid aliasing when a continuous time
	signal is given by $x(t) = 5 \cos 400\pi t$
Option A:	100 Hz
Option B:	200 Hz
Option C:	300 Hz
Option D:	400 Hz
Q22.	Each signal in an FDM signal-
Option A:	Serves as a subcarrier
Option B:	Modulates the main carrier
Option C:	Is mixed with all the others before modulation
Option D:	Modulates the final carrier
Q23.	Quantizing noise occurs in-
Option A:	Pulse-width modulation
Option B:	Frequency division multiplex
Option C:	Pulse-code modulation
Option D:	Time-division multiplex
Q24.	The sharing of a medium and its link by two or devices is called
Option A:	Modulation
Option B:	Encoding
Option C:	Line discipline
Option D:	Multiplexing
Q25.	To separate channels in an FDM receiver, it is necessary to use-
Option A:	Bandpass filters
Option B:	AND gates
Option C:	Differentiation
Option D:	Integration

Examination 2020 under cluster Vidyavardhini's College of Engg & Tech

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX406 Course Name: LINEAR CONTROL SYSTEMS

Time: 1hour

Max. Marks: 50

Note:

==

1. All Questions are compulsory and carry equal marks.

2. Assume suitable data wherever necessary.

Q1.	For an open loop system, which of the following is incorrect
Option A:	It is cheap
Option B:	Errors are large
Option C:	Systems are accurate
Option D:	output is independent of control input
Q2.	A control system in which control action issome how dependent on the output is called
Option A:	Open loop system
Option B:	Closed loop system
Option C:	Semi-closed loop system
Option D:	Semi-open loop system
Q3.	In a positive feedback system, overall gain will be
Option A:	Decreased
Option B:	Increased
Option C:	Zero
Option D:	unaffected
Q4.	In force current analogy, spring is analogous to
Option A:	C
Option B:	1/C
Option C:	L
Option D:	1/L
Q5.	The transfer function of the circuit

Option A:	R+RCs
Option B:	1/(1+ RC s)
Option C:	R+1/Cs
Option D:	R+Cs
06.	What is the overall transfer function of a positive unity feedback system with forward
20.	gain as G
Option A:	G/(1+GH)
Option R:	G/(1+G)
Option C:	GH/(1+G)
Option D:	G/(1 G)
Option D.	
07	
Q7.	The overall transfer function of the block diagram is
Option A:	(G1-G2)/(1+H)
Option B:	(G1+G2)/(1+H)
Option C:	G1G2/(1+G1G2H)
Option D:	G1G2/(1-G1G2H)
Q8.	Which of the following is not a rule of root locus plot
Option A:	The root locus starts from open loop pole
Option B:	The number of separate branches is equal to number of open loop poles or zeroes
Option C:	Root locus is symmetrical about the imaginary axis
Option D:	The root locus branches are finally parallel to the asymptotes.
09	In root locus plots, the angle of asymptotes is calculated by $\frac{1}{2}$ where P-
×-·	no of poles. $Z = no$ of zeros. $k=0.1.2$
Option A:	(2k+1)180/(P+7)
Ontion R:	(2k+1)100/(1+2) (2k+1)180/(P-7)
Option C:	(2K+1)100/(1-2) (1+1)100/(D 7)
Option C:	$(h+1)100/(\Gamma-L)$
Option D:	$(K+1)10U/(\Gamma+L)$
010	
Q10.	The Bode plot for a numerator term (1+5s), will have a corner frequency of
	and change of slope at the corner frequency will be
Option A:	5, 20db/d

Option B:	1/5, 20db/d
Option C:	5, -20db/d
Option D:	1/5, -20db/d
1	
Q11.	In Bode plot, there is a corner frequency of 0.5 and at that frequency ther change f
	slope is -40db/d, this indicates presence of term in
Option A:	$(4+s^2)$, numerator
Option B:	(1+4s), denominator
Ontion C:	$(A + s^2)$ numerator
Option D:	$(1+4s^2)$ denominator
Option D.	
012	The open loop transfer function of a unity feedback system is
Q12.	The open loop transfer function of a unity feedback system is 50 . The law
	$G(s) = \frac{1}{(1+0.1s)(s+10)}$, Find Kp.
Option A:	2
Option B:	0
Option C:	5
Option D:	0.2
Q13.	What is the type of system for a unity feedback $G(s) = \frac{10(s+1)}{10(s+1)}$
	what is the type of system for a unity reduced $a(0) = \frac{s^2(s+2)(s+10)}{s^2(s+2)(s+10)}$
Option A:	2
Option B:	5
Option C:	
Option D:	4
Q14.	For a phase lead network,
Option A:	Pole is nearer to the origin
Option B:	Pole is in the right half of s-plane
Option C:	Zero is nearer to the origin
Option D:	Zero is in the right half of s-plane
Q15.	Which of the following is not true for a phase lead network
Option A:	Band width reduces
Option B:	Speed of response increases
Option C:	Overshoot reduces
Option D:	Steady state error does not show improvement.
Q16.	When a zero is added in the forward path, which of the following is not true
Option A:	Band width increases
Option B:	Time rise reduces
Option C:	Settling time reduces
Option D:	System becomes more stable
Q17.	According to the property of state transition method, e^0 is equal to
Option A:	Ι

Option B:	A
Option C:	e ^{-At}
Option D:	-e ^{-At}
Q18.	The state model for $G(s) = 1/(s^2+5s+6)$ can be
Option A:	$A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Option B:	$A = \begin{bmatrix} 0 & 1 \\ 6 & -5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Option C:	$A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Option D:	$A = \begin{bmatrix} 0 & 1 \\ 6 & 5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Q19.	Which of the following will be a stable system, according to Nyquist criteria
Option A:	Gain margin= positive, phase margin= negative
Option B:	Gain margin= negative, phase margin= negative
Option C:	Gain margin= positive, phase margin= positive
Option D:	Gain margin= negative, phase margin= positive
Q20.	The closing of Nyquist plot from $\omega = -j0$ to $\omega = j0$ depends on
Option A:	Type of system
Option B:	Number of poles
Option C:	Number of zeros
Option D:	Difference between nom of poles and zeros.
Q21.	Transfer function is defined as the laplace transform of output divided by the laplace transform of input with initial conditions as
Option A:	0
Option B:	1
Option C:	10
Option D:	infinite
Q22.	For given characteristics equation which having roots on right hand side
Option A:	$s^2 + 4s + 1$
Option B:	$s^2 - 4s + 1$
Option C:	$s^3 + 4s^2 + 3s + 1$
Option D:	
Option D.	6S+1
	6S+1
023	0s+1
Q23. Option A:	6s+1 In root locus plots, the breakaway points are calculated by equating dK/ds=1
Q23. Option A: Option B:	6s+1 In root locus plots, the breakaway points are calculated by equating dK/ds=1 dK/ds=180
Q23. Option A: Option B: Option C:	6s+1 In root locus plots, the breakaway points are calculated by equating dK/ds=1 dK/ds=180 dK/ds=infinite

Option D:	dK/ds=0
Q24.	What are the error coefficients for $G(S) = \frac{40(S+2)}{S(S+1)(S+4)}$
Option A:	$Kp = \infty$, $Kv = 20$, $Ka = 0$
Option B:	$Kp = 20$, $Kv = \infty$, $Ka = 0$
Option C:	$Kp = 0$, $Kv = 20$, $Ka = \infty$
Option D:	$Kp = \infty$, $Kv = 0$, $Ka = 20$
Q25.	which is not the static error coefficient
Option A:	$K p = \lim_{s \to 0} G(S)H(S)$
Option B:	$K v = \lim_{s \to 0} S G(S) H(S)$
Option C:	$K a = \lim_{s \to 0} S2 G(S)H(S)$
Option D:	$K r = \lim_{s \to 0} S3 G(S)H(S)$

Examinations Commencing from 23rd December 2020 to 6th January 2021 Program: Electronics Engineering Curriculum Scheme: Rev2016 (CBCGS) Examination: Second Year Semester IV Course Code: ELX401 and Course Name: Applied Mathematics-IV

Time: 2 hour

Max. Marks: 80

Note : Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

01	Choose the correct option for following questions. All the Questions are					
Q1	compulsory and carry equal marks					
Q1.	Brachistocrone Problem is					
Option A:	Minimal Surface area Problem					
Option B:	Shortest Time Problem					
Option C:	Shortest Distance Problem					
Option D:	Solid of revolutionProblem					
Q2.	If $f(x, y, y')$ is independent of y then the Euler Lagrange equation becomes					
Option A:	$\left \frac{\partial f}{\partial y} - \frac{d}{dx}\left(\frac{\partial f}{\partial y}\right) = 0\right $					
Option B:	$\left \frac{\partial f}{\partial y} - \frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right)\right = 0$					
Option C:	$\frac{\partial f}{\partial y'} = C$					
Option D:	$f - y' \frac{\partial f}{\partial y'} = C$					
03.	If $u = (u_1, u_2, u_3, \dots, u_n)$ and $v = (v_1, v_2, v_3, \dots, v_n)$ are any two vectors in \mathbb{R}^n					
	then which of the following holds					
Option A:	$ u \cdot v \le u \cdot v $					
Option B:	$ u \cdot v > u \cdot v $					
Option C:	$ u \cdot v \ge u \cdot v $					
Option D:	$ u \cdot v = u \cdot v $ for all u,v					
*						
Q4.	Find the value of k for which $u=(2,1,3)$ and $v=(1,7,k)$ are orthogonal					
Option A:	k=-3					
Option B:	k=3					
Option C:	k=1					
Option D:	k=2					
-						
Q5.	The set of matrices of order 2x2 of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ with usual addition and					
	scalar multiplication is a vector space. Then what will be the additive identity?					
Option A:						
1						
Option B:						
	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$					
Option C:	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$					

Option D:	[0 0]						
	[0 0]						
Q6.	The characteristic equation of the matrix $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$ is						
Option A:	(x-1)(x-2)(x+2) = 0						
Option B:	$\frac{(x - 2)(x - 2)(x - 2)}{(x + 2)(x + 1) = 0}$						
Option C:	(x-2)(x-2)(x-1) = 0						
Option D:	(x-1)(x-1)(x-2) = 0						
Q7.	The eigen values of matrix A are 1,-1,2, then the eigen values of $A^2 - 3A + I$ are respectively						
Option A:	-1,5,-1						
ption B:	5,-1,11						
Option C:	1,1,4						
Option D:	-2,4,-2						
Q8.	$\lambda = -3$ is the eigenvalue of $A = \begin{bmatrix} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{bmatrix}$. The eigenvector corresponding						
Ontion A:	$\frac{10 \text{ eigenvalue } \lambda = -3 \text{ is}}{[1 \ 1 \ 0]^2}$						
Option R:	$\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$						
Option C:	$[1 \ 2 \ 3]$						
Option D:	$[1 \ 1 \ 1]$ $[1 - 1 \ 1]'$						
Option D.							
Q9.	$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is similar to which of the following matrix?						
Option A:	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$						
Option B:	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} $						
Option C:	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$						
Option D:	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$						
Q10.	A continuous random variable has probability density function						
	$f(x) = 1 - \frac{4}{x^2}$, $x \ge 2$, and $f(x) = 0$ otherwise. Find mean						
Option A:	2						
Option B:	1/2						
Option C:	4						
Option D:	-1/2						

Q11.	The r -th Moment of the probability distribution X about origin is
Option A:	$E(X^r)$
Option B:	$E(X)^3$
Option C:	$E(X^2)$
Option D:	E(X)
Q12.	If $V(X)=5$ Find $V(3X+2)=?$
Option A:	15
Option B:	17
Option C:	47
Option D:	45
Q13.	If mean is 2 and variance is 1 in Binomial distribution. Find number of trials in
	experiment.
Option A:	16
Option B:	6
Option C:	4
Option D:	3
014	
Q14.	If coefficient of regression $b_{xy} > 1$ then
Option A:	$b_{yx} > 1$
Option B:	$b_{yx} < 1$
Option C:	$b_{yx} = 1$
Option D:	$b_{yx} = 0$
Q15.	What does it imply if coefficient of correlation is zero
Option A:	Perfect positive correlation
Option B:	positive correlation
Option C:	negative correlation
Option D:	No correlation
Q16.	Evaluate $\int_{z} 2z dz$, where C is upper half of the circle $ z =1$
Option A:	1
Option B:	-1
Option C:	0
Option D:	ίπ
Q17.	Evaluate $\int_C \frac{z+6}{z^2-4} dz$, where C is the circle $ z = 1$
Option A:	ίπ
Option B:	0
Option C:	2 <i>i</i> π
Option D:	π
	7
Q18.	Find the residue of $\frac{e^z}{e^z}$ at its pole
	(Z-1) ³
Option A:	
Option B:	
Option C:	e/o

Option D:	e/4
Q19.	The nature of singularity of $f(z) = z^{-2}e^{z}$ has
Option A:	essential singularity at z=0
Option B:	removable singularity at z=0
Option C:	z=0 is a pole of order 2
Option D:	z=0 is a pole of order -2
Q20.	If f(z) is analytic in and on closed counter C then $\int_C f(z)dz = ?$
Option A:	1
Option B:	0
Option C:	2 <i>i</i> π
Option D:	π

Q2. (20 Marks)	Solve any Four out of Six5 marks each						rks each	
А	Use Rayl $\int_0^{-1} (y^2 - y^2)$	leigh Rit · y' ² + 2xy	z Method y) dx with	l to y(0) :	solve =0, y(1	boundary $() = 0$	value	problem
В	Construct an orthonormal basis for the subspace of R^3 by applying Gram- Schmidt process where $S = \{(1,2,0), (0,3,1)\}$							
С	Show that $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$ is derogatory.							
D	A discrete x P(X=x) Find k, mea	random va -2 0.2 an and var	riable has t -1 k iance.	the pro 0 0.1	bability 1 2	density fu 2 k 0	nction:	3 2k
E	Calculate Spearman's rank correlation coefficient from the following dataX1820345212Y3923351846							
F	Expand $f(z) = \frac{z-1}{z^2-z-z}$ about z=0 for 1< Z <3							

Q3.(20 Marks)	Solve any Four out of Six	5 marks each
А	Find the extremal of $\int_0^{-1} (xy + y^2 - 2y^2y') dx$	
В	Show that the set of vectors of the form (a,b,c) where $b=a+$ subspace of R ³ under the usual addition and scalar multiplic	c form a cation.
С	Find A ⁻¹ by using Cayley-Hamilton theorem if A = $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	$ \begin{bmatrix} -1 & 1 \\ 2 & -1 \\ -1 & 2 \end{bmatrix} $
D	A manufacturer known from his experience that the resistance he produces is normal with $\mu = 100$ ohms and standard der ohms. What percentage of resistors will have resistance bet and 102 ohams?	nce of resistors viation $\sigma=2$ tween 98 ohms
Е	The equations of regression lines are $3x+2y=26$ and $6x+y=$ Find mean \overline{x} , \overline{y} and coefficient of correlation r.	31.
F	Evaluate $\int_{C} \frac{2z-1}{2(2z+1)(z+3)} dz$ using residue theorem, where C	C is $ \mathbf{Z} =1$.