Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX402 Course Name: Electronic Devices and Circuits II

Note:

Time: 1hour

- 1. All Questions are compulsory and carry equal marks.
- 2. Assume suitable data wherever necessary.

0.1	XXXII 1 C.1 C.11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q1.	Which of the following is not an improvement if negative feedback is introduced in a
	CE amplifier circuit?
Option A:	Higher input impedance
Option B:	Better stabilized voltage gain
Option C:	Improved frequency response
Option D:	Improved voltage gain
Q2.	Determine the voltage gain with feedback for a voltage-series feedback having $A = -$
	1000, Rin = 175 k Ω , Ro = 2.5 k Ω , and a feedback of β = -0.25.
Option A:	3.85
Option B:	-3.85
Option C:	-9.09
Option D:	9.09
•	
Q3.	In a RC phase-shift oscillator, the gain of the amplifier stage must be greater than
	to satisfy Barkhausen's criteria.
Option A:	19
Option B:	29
Option C:	30
Option D:	1
•	
Q4.	The frequency of a Wien bridge oscillator is dependent on the following
	components?
Option A:	R1 and C1
Option B:	C1 and C2
Option C:	R1, R2, C1, and C2
Option D:	R1 and R2
1	
Q5.	An amplifier incorporates negative feedback using voltage-shunt feedback
	connection. This feedback will result in
Option A:	Increased input impedance and increased output impedance
Option B:	Increased input impedance and decreased output impedance
Option C:	Decreased input impedance and increased output impedance
- F 5.	r r

Max. Marks: 50

Q6. Which of the following capacitances does not affect the low frequency response of an RC coupled CE amplifier? Option A: Input coupling capacitance Option D: AC bypass capacitance Option D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 kHz Option D: 133 kHz Option D: 133 kHz Option D: 133 kHz Option A: 133 kHz Option A: Critical frequency Option A: Critical frequency Option C: Alpha cut-off frequency Option C: Alpha cut-off frequency Option A: Deter if stage gain in low and worse if stage gain is high Option B: Be better if stage gain in low and worse if stage gain is high Option B: Be better if stage gain in low and worse if stage gain is high Option B: Be better than that of a single stage Option A: South Option C: Remain the same as that of a single stage Option D: S	Option D:	Decreased input impedance and decreased output impedance
Option B: AC bypass capacitance Option C: output coupling capacitance Option D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 kHz Option B: 1.33 kHz Option C: 13.3 kHz Option D: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Q6.	
Option C: output coupling capacitance Q7. Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 KHz Option D: 13.3 kHz Option D: 13.3 kHz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option D: Be better than that of a single stage Option D: S500db Option D: 550db Option D: 550db Option D: 750db <td>Option A:</td> <td>Input coupling capacitance</td>	Option A:	Input coupling capacitance
Option D: Millers capacitance Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 kHz Option D: 133 kHz Option D: 133 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 55db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option A: Electrical size of the coupling capacitor Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option B:	AC bypass capacitance
Q7. An amplifier has a input impedance of 1.2 kΩ. The input coupling capacitor is 1 μF. Determine the approximate lower cutoff frequency. Option A: 133 KHz Option D: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Option C:	output coupling capacitance
Determine the approximate lower cutoff frequency. Option A: 133 KHz Option C: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Option D:	Millers capacitance
Option B: 1.33 kHz Option C: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Q7.	
Option C: 13.3 kHz Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option C: 55db Option C: 55db Option C: 55db Option C: There is considerable power loss Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option A:	133 KHz
Option D: 133 Hz Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as	Option B:	1.33 kHz
Q8. The frequency at which the magnitude of the short circuit current gain of RC coupled voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		13.3 kHz
voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option D:	133 Hz
voltage amplifier goes to 1 (one) is called as Option A: Critical frequency Option B: Beta cut-off frequency Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		
Option B: Beta cut-off frequency Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option B: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Q8.	
Option C: Alpha cut-off frequency Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option D: 55db Option D: 55db Option A: Electrical size of the coupling capacitor Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option A:	Critical frequency
Option D: Unity-gain frequency Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will	Option B:	Beta cut-off frequency
Q9. The overall bandwidth of two identical voltage amplifiers connected in cascade Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 550db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option C:	Alpha cut-off frequency
Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option D:	Unity-gain frequency
Will Option A: Be better if stage gain in low and worse if stage gain is high Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		
Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Q9.	Will
Option B: Be worse than that of a single stage Option C: Remain the same as that of a single stage Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option A:	Be better if stage gain in low and worse if stage gain is high
Option D: Be better than that of a single stage Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option B:	Be worse than that of a single stage
Q10. If three amplifiers with voltage gains of 10db, 25db and 20db are cascaded together, what will be the overall voltage gain? Option A: 5500db Option B: 550db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option C:	Remain the same as that of a single stage
Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option D:	Be better than that of a single stage
Option A: 5500db Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		
Option B: 550db Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Q10.	
Option C: 55db Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option A:	5500db
Option D: 5000db Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option B:	550db
Q11. RC coupling is not used in amplifiers to amplify extremely low frequencies, because of Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option C:	55db
Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option D:	5000db
Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		
Option A: Electrical size of the coupling capacitor Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Q11.	
Option B: Low efficiency Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		
Option C: There is considerable power loss Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	-	
Option D: There is a hum in the output Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to	Option B:	Low efficiency
Q12. The overall gain of a multistage amplifier is less than the product of the gains of individual stages due to		There is considerable power loss
individual stages due to	Option D:	There is a hum in the output
individual stages due to		
	Q12.	1
	Option A:	The use of many capacitors

Option B:	Loading effect of the next stage
Option C:	The use of many transistors
Option C:	Power loss in the coupling device
Option D.	1 ower loss in the coupling device
Q13.	coupling is used to amplify d.c. signal in a multistage amplifier.
Option A:	Transformer
Option B:	RC
Option C:	Impedance
Option D:	Direct
Q14.	A differential amplifier has a differential gain of 2000 and a common mode gain of 0.2. The CMRR in dB is equal to
Option A:	400
Option B:	80
Option C:	40
Option C:	10000
Option D.	10000
Q15.	If output is measured between two collectors of transistors, then the Differential
	amplifier with two input signal is said to be configured as
Option A:	Single Input Balanced Output
Option B:	Dual Input Unbalanced Output
Option C:	Dual Input Balanced Output
Option D:	Dual Input Unbalanced Output
option 2.	Buil input onculaneed output
Q16.	To increase the value of CMRR, which circuit is used to replace the emitter
	resistance RE in differential amplifier?
Option A:	Constant current bias
Option B:	Diode in parallel with Re
Option C:	Resistor in parallel with Re
Option D:	Resistor in series with Re
- F	
Q17.	A widlar current source is used
Option A:	to get high value of CMRR
Option B:	to get low voltage gain
Option C:	to get low value of current
Option D:	to get high value of Output
Q18.	CE amplifier is used as a large signal class A amplifier because
Option A:	it has very high input impedance
Option B:	it has very high output impedance
Option C:	it is very much stable
Option D:	it has very high voltage gain
Q19.	The DC operating (Q) point in class B amplifier lies in region.
Option A:	Cut off
Option B:	Active
Option C:	Between saturation and active

Option D:	Saturation
Q20.	If DC power for a Class A amplifier is 1000W and AC power is 300W, what is its
	efficiency?
Option A:	30%
Option B:	50%
Option C:	20%
Option D:	75%
Q21.	Cross over distortion occurs in power amplifiers because of the following:
Option A:	due to resistors
Option B:	due to Inductors
Option C:	due to Capacitors
Option D:	switching of transistors after every half cycle
Q22.	The structure of the IGBT is a
Option A:	P-N-P-N structure connected by a MOS gate
Option B:	N-P-N-P structure connected by a MOS gate
Option C:	P-N-P structure connected by a MOS gate
Option D:	N-N-P-P structure connected by a MOS gate
Q23.	When a reverse bias voltage exceeding the breakdown voltage is applied to an
	IMPATT diode, it results in:
Option A:	thermal runaway
Option B:	avalanche multiplication
Option C:	break down of depletion region
Option D:	high reverse saturation current
Q24.	The negative resistance region in UJT characteristics lies between
Option A:	after valley point
Option B:	between peak and valley points
Option C:	before peak point
Option D:	in all regions
- r	
Q25.	The control element of an SCR is
Option A:	Anode supply
Option B:	Anode
Option C:	Gate
Option D:	Cathode

Program: BE Electronics Engineering

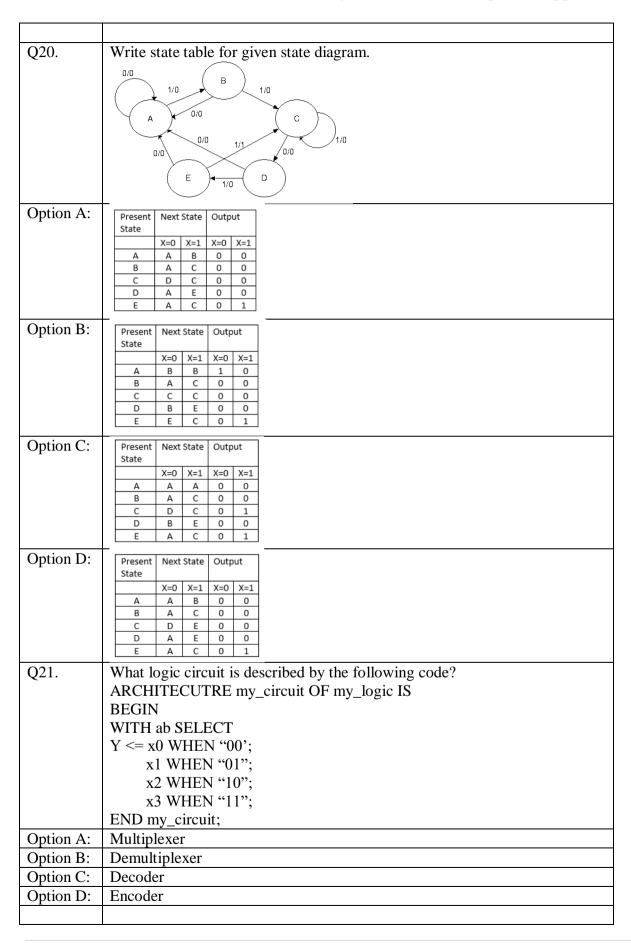
Curriculum Scheme: Revised 2016 (CBCGS)

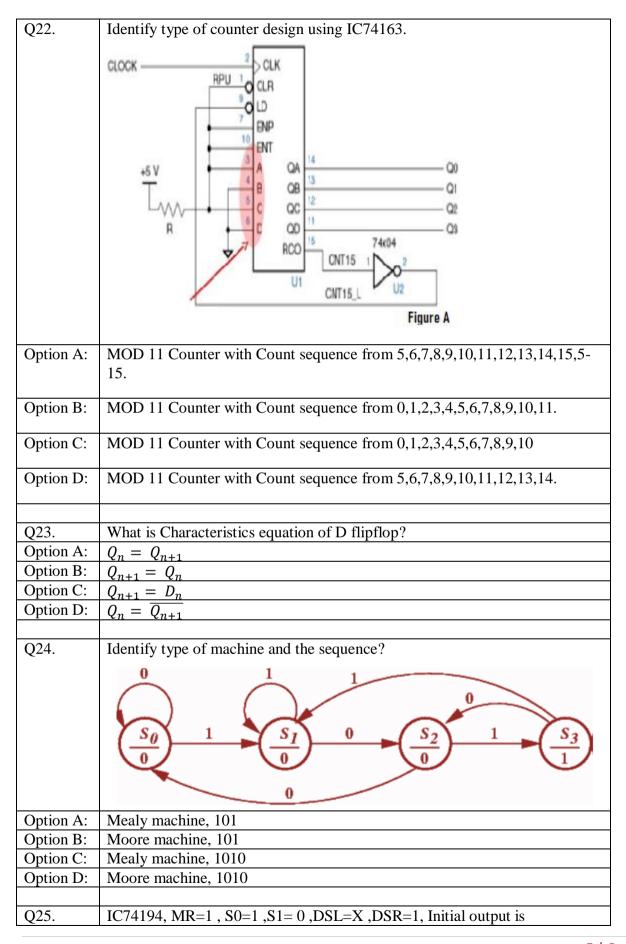
Examination: Second Year Semester IV

Course Code: ELX404 Course Name: Digital System Design

Note:

Time: 1 hour


- 1. All Questions are compulsory and carry equal marks.
- 2. Assume suitable data wherever necessary.


Q1.	A is type synchronous sequential circuit whose output
Q -1.	values are determined only by its present state.
Option A:	Mealy Machine
Option B:	Moore Machine
Option C:	Asynchronous machine
Option D:	Finite State Machine
Q2.	Which of the following is not basic component of ASM chart?
Option A:	State box
Option B:	Transition Table
Option C:	Decision box
Option D:	Conditional output box
Q3.	MSI Chip IC74169 is the
Option A:	Synchronous 4 bit UP/DOWN Binary counter
Option B:	Synchronous Decade UP/DOWN Binary counter
Option C:	Synchronous 4 bit UP Binary counter
Option D:	Asynchronous 4 bit UP/DOWN Binary counter
Q4.	Which of the following is type of signal assignment operator?
Option A:	:=
Option B:	<=
Option C:	==
Option D:	!=
Q5.	Which of the following line is correct for detecting rising edge of a clock?
Option A:	if (clk'EVENT AND clk = '0')
Option B:	if (clk'EVENT AND clk = '1')
Option C:	if (clk'EVENT OR clk = '0')
Option D:	if (clk'EVENT OR clk = '1')
Q6.	CPLD Stands for
Option A:	Common Programmable Logic Device
- r	1

Max. Marks: 50

O .: D	
Option B:	Complex Programmable Level Device
Option C:	Complex Programmable Logic Device
Option D:	Complete Programmable Logic Device
Q7.	is not a type state reduction technique.
Option A:	Inspection
Option B:	K-map
Option C:	Implication Chart
Option D:	Partition
Q8.	box indicates the effect of input on control subsystem.
Option A:	State Box
Option B:	Data Box
Option C:	Control Box
Option D:	Decision Box
Q9.	IC7493 consist of
Option A:	Mod 2 counter and Mod 5 Counter
Option B:	Only Mod 8 counter
Option C:	Mod 2 and Mod 4 counter
Option D:	Mod 2 and Mod 8 Counter
Q10.	In VHDL, PROCESS is a statement.
Option A:	Sequential
Option B:	Concurrent
Option C:	Conditional
Option D:	Functional
Q11.	Identify type of library specified in following statement. use IEEE.std logic 1164.all;
Option A:	Use
Option B:	IEEE
Option C:	.all
Option D:	std_logic_1164
1	
Q12.	In both OR array and AND arrays are programmable.
Option A:	Programmable logic array
Option B:	Programmable array logic
Option C:	Programmable level array
Option D:	Programmable Adder Logic
1	
Q13.	How many state variables required to represent 3 states?
Option A:	2
Option B:	1
Option C:	3
Option D:	4
opnon D.	I ·

Sequence "1011" Option A: 3 Option D: 2 Option D: 5 Q15. ASM Chart has Option B: 3 exits Option D: Any number of exits Option A: 1010 Option B: 0101 Option B: 0101 Option B: 0101 Option D: 0100 Q17. The architecture describes digital circuit implemented by modeling. ARCHITECTURE my_arch OF my_design IS BEGIN y1 <= a xor b xor c; y2 <= (a and b) or (a and c) or (b and c); END my_arch; Option B: Full adder, behavioral Option B: Full adder, dataflow Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN y1 = x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option A: LUT, input Option A: LOok up table, output Option A: LUT, input Option A: Look up table, output Option A: LUT, input Option A: LUT, input Option A: Look up table, output Option C: input, output		
Option B: 2 Option C: 4 Option D: 5 Q15. ASM Chart has Option A: 4 exits Option A: 4 exits Option D: 3 exits Option D: Any number of exits Q16. Condition: IC74163, CLR=ENP=ENT=1, LD=0, ABCD=1010, What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option B: 0101 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Q14.	How many flipflops required to design Moore machine sequence detector for sequence "1011"
Option C: 4 Option D: 5 Q15. ASM Chart has Option A: 4 exits Option B: 3 exits Option D: Any number of exits Q16. Condition: IC74163, CLR=ENP=ENT=1, LD=0, ABCD=1010, What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option D: 1100 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option A:	3
Option D: 5 Q15. ASM Chart has Option A: 4 exits Option B: 3 exits Option D: Any number of exits Q16. Condition: IC74163, CLR=ENP=ENT=1, LD=0, ABCD=1010, What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option C: 1100 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling, ARCHITECTURE my_arch OF my_design IS BEGIN y1 <= a xor b xor c; y2 <= (a and b) or (a and c) or (b and c); END my_arch; Option A: Half adder, behavioral Option B: Full adder, dataflow Option D: Full adder, dataflow Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN y <= x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 2 Option A: LUT, input Option A: LUT, input Option C: input, output	Option B:	2
Q15. ASM Chart has Option A: 4 exits Option B: 3 exits Option D: Any number of exits Q16. Condition: IC74163, CLR=ENP=ENT=1, LD=0, ABCD=1010, What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option B: 0101 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option C:	4
Option A: 4 exits Option B: 3 exits Option C: 2 exits Option D: Any number of exits Q16. Condition: IC74163 , CLR=ENP=ENT=1 , LD=0, ABCD=1010 , What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option C: 1100 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option D:	5
Option B: 3 exits Option C: 2 exits Option D: Any number of exits Q16. Condition: IC74163, CLR=ENP=ENT=1, LD=0, ABCD=1010, What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Q15.	ASM Chart has
Option C: 2 exits Option D: Any number of exits Q16. Condition: IC74163 , CLR=ENP=ENT=1 , LD=0, ABCD=1010 , What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option A:	4 exits
Option D: Any number of exits Q16. Condition: IC74163 , CLR=ENP=ENT=1 , LD=0, ABCD=1010 , What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option C: 1100 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option B:	3 exits
Q16. Condition: IC74163 , CLR=ENP=ENT=1 , LD=0, ABCD=1010 , What is Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option C:	2 exits
Output at pin QD, QC,QB,QA Option A: 1010 Option B: 0101 Option C: 1100 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option D:	Any number of exits
Option B: 0101 Option C: 1100 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Q16.	
Option B: 0101 Option C: 1100 Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling.	Option A:	1010
Option D: 0010 Q17. The architecture describes digital circuit implemented by modeling. ARCHITECTURE my_arch OF my_design IS BEGIN y1 <= a xor b xor c; y2 <= (a and b) or (a and c) or (b and c); END my_arch; Option A: Half adder, behavioral Option B: Full adder, behavioral Option C: Half adder, dataflow Option D: Full adder, dataflow Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN Y <= x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option C: input, output		0101
Q17. The architecture describes digital circuit implemented by modeling. ARCHITECTURE my_arch OF my_design IS BEGIN y1 <= a xor b xor c; y2 <= (a and b) or (a and c) or (b and c); END my_arch; Option A: Half adder, behavioral Option B: Full adder, behavioral Option D: Full adder, dataflow Option D: Full adder, dataflow Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN Y <= x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option B: Look up table, output Option C: input, output	Option C:	1100
modeling. ARCHITECTURE my_arch OF my_design IS BEGIN yl <= a xor b xor c; y2 <= (a and b) or (a and c) or (b and c); END my_arch; Option A: Half adder, behavioral Option B: Full adder, dataflow Option D: Full adder, dataflow Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN Y <= x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option C: input, output	Option D:	0010
Option C: Half adder, dataflow Option D: Full adder, dataflow Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN Y <= x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option B: Look up table, output Option C: input, output	Option A:	modeling. ARCHITECTURE my_arch OF my_design IS BEGIN y1 <= a xor b xor c; y2 <= (a and b) or (a and c) or (b and c); END my_arch; Half adder, behavioral
Option D: Full adder, dataflow Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN Y <= x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option B: Look up table, output Option C: input, output		
Q18. What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN Y <= x SRL 2; END my_function; Option A: Divide by 2 Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option B: Look up table, output Option C: input, output	-	,
Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option B: Look up table, output Option C: input, output	-	What kind of logic is represented by the given code? ARCHITECTURE my_function of my_logic is BEGIN Y <= x SRL 2; END my_function;
Option B: Divide by 4 Option C: Multiply by 2 Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option B: Look up table, output Option C: input, output	Option A:	Divide by 2
Option D: Multiply by 4 Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option B: Look up table, output Option C: input, output	Option B:	Divide by 4
Q19. FPGA consist of CLB's, CLB uses to generate Option A: LUT, input Option B: Look up table, output Option C: input, output	Option C:	Multiply by 2
Option A: LUT, input Option B: Look up table, output Option C: input, output	Option D:	Multiply by 4
	Option A: Option B:	LUT, input Look up table, output
Option D: LUT_LUT	Option D:	LUT, LUT

	Q0,Q1,Q2,Q3 =0 0 0 0, What should be the output after 3 rd clock pulse applied
Option A:	1000
Option B:	1100
Option C:	1110
Option D:	1111

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX403 Course Name: Microprocessors and Applications.

Time: 1 hour Max. Marks: 50

Note:

- 1. All Questions are compulsory and carry equal marks.
- 2. Assume suitable data wherever necessary.

Q1	8086 microprocessor has bit Arithmetic Logic Unit.
Option A:	64
Option B:	32
Option C:	8
Option D:	16
Option B.	
Q2	8086 microprocessor has byte pre-fetch queue in bus interface unit.
Option A:	6
Option B:	4
Option C:	2
Option D:	3
Q3	8086 microprocessor can access segments at a time.
Option A:	1
Option B:	4
Option C:	3
Option D:	2
Q4	For which addressing mode, the offset address of the operands is directly specified in the instruction?
Option A:	Register
Option B:	Implied
Option C:	Direct
Option D:	Immediate
1	
Q5	string instruction is used to load AL/AX register with a byte / word
	from data segment.
Option A:	LODS
Option B:	STOS
Option C:	CMPS
Option D:	SCAS

Q6	Which instruction forms 2's complement of the specified destination in the
Qu	instruction?
Option A:	NOT
Option B:	NEG
Option C:	CMP
	DAA
Option D:	DAA
Q7	The end of a macro can be represented bydirective.
Option A:	END
Option B:	ENDS
Option C:	ENDP
Option D:	ENDM
Q8	Which interrupt occurs whenever there is division error?
Option A:	INT 0
Option B:	INT 2
Option C:	INT 3
Option D:	INT 4
option B.	
Q9	In 8086 microprocessor the total size of Interrupt vector table is
Option A:	1KB
Option B:	2KB
Option C:	128 KB
Option D:	256KB
Q10	If MN/\overline{MX} is low then 8086 operates inmode.
Option A:	Minimum
Option B:	Maximum
Option C:	Multiprocessor
Option D:	Single processor
- орион 2 :	angle processor
Q11	In 8086 maximum mode, bus controller is used to generate memory and I/O control signals
Option A:	8286
Option B:	8288
Option C:	8284
Option D:	8087
Q12	is multiprocessor mode of 8086.
Option A:	Minimum mode
Option B:	Maximum mode
Option C:	Master mode
Option D:	Master-Slave mode

Option A:	Direct Enable
Option B:	Data Entered
Option C:	Data Enable
Option D:	Data Encoding
Q14	8255 is known as
Option A:	Programmable Interrupt Controller
Option B:	Programmable Peripheral Interface
Option C:	Direct Memory Access Controller
Option D:	Programmable Interval Timer
Q15	In the I/O mode, the 8255 ports work as
Option A:	reset pins
Option B:	set pins
Option C:	programmable I/O ports
Option D:	only output ports
	<u> </u>
Q16	The number of vector interrupts provided by 8259 in a cascade mode is
Option A:	8
Option B:	16
Option C:	32
Option D:	64
<u> </u>	
Q17	In 8259, the register that stores all the interrupt requests in it in order to serve them
	one by one on a priority basis is
Option A:	Interrupt Request Register
Option B:	In-Service Register
-	Priority resolver
Option C:	V
Option D:	Interrupt Mask Register
Q18	The pin is used by DMAC to request the microprocessor to release the system bus.
Option A:	HLDA
Option B:	HRQ
Option C:	ADSTB
Option D:	DACK
Q19	How many modes of data transfer 8237 has?
Option A:	2
Option B:	4
Option C:	6
Option D:	8
•	
Q20	Pentium processor has pipelines.
Option A:	Two

	T
Option B:	Three
Option C:	Four
Option D:	Six
Q21	The instruction cache of Pentium processor is
Option A:	read-only cache
Option B:	write only cache
Option C:	read-write cache
Option D:	write back cache
Q22	In Pentium's super scalar architecture, the number of instructions that are executed
	per clock cycle is
Option A:	0
Option B:	1
Option C:	1.5
Option D:	2
Q23	The unit that is used to implement the multiple branch prediction in Pentium is
Option A:	control unit
Option B:	bus interface unit
Option C:	branch target buffer
Option D:	branch instruction register
_	
Q24	The stage in which the CPU fetches the instructions from the instruction cache in
	super-scalar organization is
Option A:	Prefetch stage
Option B:	D1 (first decode) stage
_	D2 (second decode) stage
Option C:	
Option D:	Final stage
025	When brench prediction is not correct and if the brench is executed in the II minutes
Q25	When branch prediction is not correct and if the branch is executed in the U-pipeline
	then cycle penalty incurred is
Option A:	4 cycle penalty is incurred
Option B:	3 cycle penalty is incurred
Option C:	1 cycle penalty is incurred
Option D:	2 cycle penalty is incurred
	1 V 1 V

Program: Electronics Engineering Curriculum Scheme: Rev2016 (CBCGS) Examination: Second Year Semester IV

Course Code: ELX401 Course Name: Applied Mathematics-IV

Time: 1 hour Max. Marks: 50

Note:

- 1. All Questions are compulsory and carry equal marks.
- 2. Assume suitable data wherever necessary.

Q1.	Find the extremal of $\int_{x_1}^{x_2} \frac{y'^2}{x} dx$	
Option A:	$y = c_1 x^3 + c_2$	
Option B:	$y = c_1 x^2 + c_2$	
Option C:		
Option D:	$y = c_1 x + c_2$ $y = c_1 x^3 + c_2 x$	
opiidi 2;	y c1n + c2n	
Q2.	The necessary condition for the functional $\int_{x_1}^{x_2} f(x, y, y', y'')$ to be extremum is	
Option A:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$	
Option B:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$	
Option C:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) - \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y''} \right) = 0$	
Option D:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) + \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y''} \right) = 0$	
Q3.	The curve represents shortest distance between two points is a	
Option A:	Straight line	
Option B:	Parabola	
Option C:	Exponential curve	
Option D:	NONE	
Q4.	For vector $\mathbf{u}=(2,3,0)$ and $\mathbf{v}=(4,2,1)$ which of the following holds	
Option A:	$ u \cdot v > u \cdot v $	
Option B:	$ u \cdot v = u \cdot v $	
Option C:	$ u \cdot v < u \cdot v $	
Option D:	$ u \cdot v < u \cdot u $	
Q5.	Find the value of k for which $u=(k,k,3)$ and $v=(k,-6,3)$ are orthogonal	
Option A:	k=-3	
Option B:	k=3	
Option C:	<u>k=1</u>	
Option D:	k=2	
	5 07	
Q6.	If W is subset of 2X 2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and V is the set of all 2X2	
	matrices then	

Option A:	W is a subspace of V	
Option A:	W is a subspace of V W is not a subspace of V	
Option C:	V is a subspace of W	
Option C. Option D:	Both are same	
Option D.	Both are same	
07	$V = R^2$ with addition and scalar multiplication given by	
Q7.		
	$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, 0); k(x_1, y_1) = (kx_1, ky_1)$ is not a vector span	
Ontion A.	There is no additive identity	
Option A:	There is no additive identity There is no additive inverse	
Option B:		
Option C:	V is not closed under addition	
Option D:	V is not closed under multiplication	
00	F1 2 21	
Q8.	$\lambda = 5$ is the eigenvalue of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. The eigenvector corresponding to	
	$\lambda = 3$ is the eigenvalue of $\lambda = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. The eigenvector corresponding to	
	eigenvalue $\lambda = 5$ is	
Option A:	$[1 - 1 \ 0]'$	
Option B:	[1 2 3]'	
Option C:	[1 1 1]'	
Option D:	[10-1]'	
Sprion 2:		
Q9.	The set of all eigen vectors corresponding to a matrix is always	
Option A:	Linearly dependent	
1		
Option B:	Linearly independent	
Option C:	Not necessarily dependent	
Option D:	Not necessarily independent	
Option D.	Not necessarily independent	
Q10.	[-9 4 4]	
Q10.	$\begin{vmatrix} -8 & 3 & 4 \end{vmatrix}$ is similar to which of the following matrix?	
Option A:	[1 0 0]	
Option B:	[1 0 0]	
Орион в:	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	
Option C:		
	$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -3 \end{bmatrix}$	

Option D:		
	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	
	10 0 31	
Q11.	IF A = $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ then eigen values of 3 A ⁻¹ + 2A + I are	
Option A:	-2,10	
Option B:	-4, 8	
Option C:	-5,7	
Option D:	-1,3	
Q12.	If the matrix A has eigen value -1 repeated twice then algebraic multiplicity of A is	
Option A:	-1	
Option B:	0	
Option C:	1	
Option D:	2	
Pron D.	_	
Q13.	If k is a constant, 'E' denotes expectation, 'V' denotes variance then which of the	
	following is true?	
Option A:	E(k) = 0, V(k) = 0	
Option B:	E(k) = k, V(k) = 0	
Option C:	E(k) = 0, V(k) = k	
Option D:	E(k) = k, V(k) = k	
_		
Q14.	What is r -th Moment about origin μ'_r	
Option A:	$E(x)^r$	
Option B:	$E(x)^2$	
Option C:	$E(x)^3$	
Option D:	$E(x)^0$	
Q15.	A die is thrown two times. What is the Probability that the sum neither 8 nor 9	
Option A:	1/9	
Option B:	1/4	
Option C:	3/4	
Option D:	5/9	
•		
Q16.	If mean is 4 and variance is 3 in Binomial distribution. Find number of trials in	
Ontion A:	1	
-		
Option D:		
Spiral 2.	-	
Q17.	A continuous random variable with p.d.f $f(X) = kx^2$, $0 \le x \le 1$ then k is	
Option A:	4	
Option B:	1/4	
Option A: Option B: Option C:	If mean is 4 and variance is 3 in Binomial distribution. Find number of trials in experiment 16 12 4 6	

	Τ-	
Option C:	3	
Option D:	1/3	
Q18.	Evaluate rank correlation coefficient for the following data:	
	X: 12 17 22 27 32	
	Y: 113 119 117 115 121	
Option A:	0.2	
Option B:	0.4	
Option C:	0.5	
Option D:	0.6	
1		
Q19.	The lines of regression are $6Y = 5X + 90$ and $15X=8Y+130$. The coefficient of	
(->-	correlation r=?	
Option A:	6/5	
Option B:	15/8	
Option C:	1.5	
Option D:	2.25	
Option D.		
Q20.	If r denotes coefficient of correlation then which of the following is true.	
Option A:	$-\infty \le r \le \infty$	
Option B:	$-1 \le r \le 1$	
Option C:	$0 \le r \le \infty$	
Option C:	r > 1	
Option D.		
Q21.	7 ² +1	
Q21.	Which of the following represents the poles of $f(z) = \frac{z^2+1}{1-Z^2}$	
Option A:	1, i	
Option B:	0	
Option C:	<u>±1</u>	
Option D:	<u>±</u> i	
•		
Q22.	Which of the following is the value of $\oint \frac{e^z}{z-2} dz$ along C, where C is $ z = 3$?	
	which of the following is the value of y_{z-2} dz along e , where e is $ z = 3$:	
Option A:		
Option B:	$2\pi ie^2$	
Option C:	2πίε	
Option D:	2πί	
Q23.	If $f(z)$ is analytic and $f'(z)$ is continuous at all points inside and on a simple	
	closed curve C, then which of the following statement is correct?	
Option A:	$\oint_C f(z) dz = 1$	
Option B:	$\oint_{C} f(z) dz = 2\pi i$	
Option C:		
Option D:	$\oint_{C} f(z) dz = 0$	
Option D:	$\oint_{\mathbf{C}} \mathbf{f}(\mathbf{z}) \mathrm{d}\mathbf{z} \neq 0$	

Q24.	Which of the following represents the singularities of $f(z) = \frac{z-3}{(z-1)(z-2)}$?
Option A:	z = 3
Option B:	z = 1,2
Option C:	z = -1, -2
Option D:	z = 0
Q25.	If $z = z_0$ is a simple pole of $f(z)$, then which of the following represents Residue
	of $f(z)$ at $z = z_0$?
Option A:	$\lim_{z\to z_0} f(z)$
Option B:	$\lim_{z \to z_0} (z - z_0) f(z - z_0)$
Option C:	$\frac{\lim_{z \to z_0} (z - z_0) I(z - z_0)}{\lim_{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} (z - z_0) f(z)}$
Option D:	$\lim_{z \to z_0} (z - z_0) f(z)$

University of Mumbai

Examination 2020 under Cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)

Examinations Commencing from 23rd December 2020 to 6th January 2021

Program: **Electronics Engineering**Curriculum Scheme: Rev 2016
Examination: SE Semester IV

Course Code: ELX406 and Course Name: Linear Control Systems

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	An automatic toaster is a loop control system.	
Option A:	Open	
Option B:	Closed	
Option C:	Partially closed	
Option D:	None of the Options	
2.	Transfer function of a system is defined as the ratio of output to input in	
Option A:	Z-Transform	
Option B:	Fourier Transform	
Option C:	Laplace Transform	
Option D:	Time domain	
3.	In signal flow graph, a feedback loop consisting of only one node is called as	
Option A:	Non-touching loop	
Option B:	Touching loop	
Option C:	Self-loop	
Option D:	Forward path	
4.	If for second order system damping factor is less than one, then system response will be	
Option A:	Undamped	

Option B:	Overdamped	
Option C:	Critically damped	
Option D:	Under damped	
5.	'Type' of the system means	
Option A:	Number of zeros at origin of an open loop transfer function	
Option B:	Number of zeros at origin of a closed loop transfer function	
Option C:	Number of poles at origin of an open loop transfer function	
Option D:	Number of poles at origin of a closed loop transfer function	
6.	Step signal is a signal whose value	
Option A:	Increases linearly with time	
Option B:	Remains constant with time for time greater than zero	
Option C:	Varies exponentially with time	
Option D:	Decreases linearly with time	
7.	The state of the dynamic system is determined using	
Option A:	State variables	
Option B:	State space	
Option C:	State vector	
Option D:	State scalar	
8.	State space analysis is applicable even if the initial conditions are	
Option A:	Equal	
Option B:	Unequal	
Option C:	Zero	
Option D:	Non-zero	
9.	The minimum number of state variables required to describe an 'nth' order	
	differential equation are:	
Option A:	n-1	

Option C: n+1 Option D: n/2 10. State model of a linear system is described by Option A: State equation Option B: Output equation Option C: State equation and output equation Option D: Transfer Function
10. State model of a linear system is described by Option A: State equation Option B: Output equation Option C: State equation and output equation
Option A: State equation Option B: Output equation Option C: State equation and output equation
Option A: State equation Option B: Output equation Option C: State equation and output equation
Option B: Output equation Option C: State equation and output equation
Option C: State equation and output equation
Option D: Transfer Function
11. The response of the system is as shown in the fig. The system is
c(t)
Steady state output
Output Company
1
Option A: Stable
Option B: Unstable
Option C: Marginally stable
Option D: Critically stable
12. If number of open loop poles are greater than the number of open loop zeros than
number of branches in root locus plot will be equal to
Option A: Number of open loop poles
Option B: Number of open loop zeros
Option C: Open loop poles - Open loop zeros
Option D: Open loop poles + Open loop zeros
13. In Routh's stability criterion, the number of sign changes in the first column o Routh's array indicates
Option A: Number of roots lying on the imaginary axis
Option B: Number of roots lying in the left half of the s-plane

Option C:	Number of roots lying in the right half of the s-plane	
Option D:	None of the Options	
14.	Cut off frequency is the frequency at which the magnitude of the closed loop response isfrom its zero frequency value.	
Option A:	-3dB	
Option B:	+3dB	
Option C:	-1dB	
Option D:	+1dB	
15.	To apply Nyquist stability criterion, polar plot ofis used	
Option A:	Characteristic equation	
Option B:	Closed loop transfer function	
Option C:	Open loop transfer function	
Option D:	State model	
16.	A system is said to be unstable when gain crossover frequency is the phase	
	crossover frequency	
Option A:	Less than	
Option B:	Greater than	
Option C:	Equal to	
Option D:	None of the Options	
17.	Frequency response of a system is defined as	
Option A:	Steady state response to step input	
Option B:	Steady state response to sinusoidal input	
Option C:	Steady state response to ramp input	
Option D:	Steady state response to impulse function	
18.	MRAC stands for	
Option A:	Model Reference Advance Control	

Option B:	Model Robust Adaptive Control	
Option C:	Model Reference Adaptive Control	
Option D:	Model Robust Advance Control	
19.	Which of the following is an input to the controller?	
Option A:	Servo signal	
Option B:	Reference input	
Option C:	Sensed signal	
Option D:	Error signal	
20.	Lead compensator the bandwidth of the closed loop system.	
Option A:	Increases	
Option B:	Decreases	
Option C:	Does not change	
Option D:	None of the Options	

Q2	
(20 Marks Each)	
A	Solve any Two 5 marks each
i.	State and prove the properties of state transition matrix.
ii.	Define the steady state error and derive its expression for a simple closed loop system.
iii.	Comment on the stability of the system with characteristic equation $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0 \text{ using Routh's criterion.}$
В	Solve any One 10 marks each
i.	Sketch the root locus for the system with open loop transfer function as: $G(s)H(s)=k/s(s+5)(s+10)$
ii.	Check the controllability and observability for the system:

	$\dot{x} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix} x$
Q3	
(20 Marks Each)	
A	Solve any Two 5 marks each
i.	Using Mason's gain formula, determine the transfer function $C(s)/R(s)$ for the signal flow graph shown in fig.
	$R(s)$ 1 G_1 G_2 G_3 G_4 G_5 1 $C(s)$ $-H_4$
ii.	A second order system has peak overshoot of 50% and period of oscillations of 0.2 sec in step response. Determine i) Resonant peak and ii) Resonant frequency
iii.	Write a short note on PID controllers.
В	Solve any One 10 marks each
i.	Sketch the polar plot for the system with open loop transfer function as $G(s)H(s){=}12/s(s{+}1)(s{+}2)$
ii.	Determine the transfer function $C(s)/R(s)$ using block diagram reduction technique for the block diagram shown in the fig.

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX405 Course Name: Principles of Communication Engineering

Time: 1 hour Max. Marks: 50

Note:

- 1. All Questions are compulsory and carry equal marks.
- 2. Assume suitable data wherever necessary.

Q1.	In a communication system, where noise get added?
Option A:	During regeneration of signal
Option B:	At transmitting antenna
Option C:	At the receiving end
Option D:	In the channel
Q2.	Frequencies in the UHF range normally propagate by means of
Option A:	Surface waves
Option B:	Space waves
Option C:	Ground waves
Option D:	Sky waves
Q3.	In overmodulation, modulation index (m) is-
Option A:	1
Option B:	Less than 1
Option C:	Greater than 1
Option D:	In between 0 to 1
Q4.	The noise due to random behavior of charge carriers is called as-
Option A:	Flicker Noise
Option B:	Shot Noise
Option C:	Industrial Noise
Option D:	Partition Noise
Q5.	The most commonly used filters in SSB generation are-
Option A:	Mechanical
Option B:	RC
Option C:	LC
Option D:	Low-pass
1	
Q6.	Vestigial sideband is most commonly used in-
Option A:	Radio transmission

Option B:	Radio Propagation
Option C:	Television transmission
Option D:	Telephony
Q7.	The peak voltage of an AM signal goes from Emax to Emin. The modulation index, m, is:
Option A:	(Emax – Emin) / (Emax + Emin)
Option B:	(Emax + Emin) / (Emax – Emin)
Option C:	Emax / Emin
Option D:	Emin / Emax
Q8.	The equation for full-carrier AM is:
Option A:	$(E_c \times E_m) \times \sin(\omega_m t) \times \sin(\omega_c t)$
Option B:	$(E_c + E_m) \times \sin(\omega_c t)$
Option C:	$(E_c + E_m) \times \sin(\omega_m t) + \sin(\omega_c t)$
Option D:	$(E_c + E_m \sin(\omega_m t)) x \sin(\omega_c t)$
Q9.	The "envelope" of an AM signal is due to:
Option A:	The baseband signal
Option B:	The modulated signal
Option C:	The carrier signal
Option D:	The amplitude signal
Option D.	The amplitude signar
Q10.	The relation between bandwidth B, modulating frequency fm and frequency deviation Δf for a sinusoidally modulated FM signal is
Option A:	$B = fm - \Delta f/$
Option B:	$B = 2(fm - \Delta f)$
Option C:	$B = 2(\Delta f + fm)$
Option D:	$B = \Delta f + fm$
•	
Q11.	The FM broadcast band is from-
Option A:	550 to 1600 kHz
Option B:	88 to 108 MHz
Option C:	88 to 108 kHz
Option D:	1600 kHz to 59.75 MHz
Q12.	Indicate the false statement regarding the Armstrong modulation system-
Option A:	Equalization is unnecessary
Option B:	The system is basically phase, not frequency modulation,
Option C:	Frequency multiplication must be used
Option D:	AFC is not needed, as crystal oscillator is used.
Q13.	A pre-emphasis circuit provides extra noise immunity by-
Option A:	Boosting the bass frequencies
Option B:	Pre amplifying the whole audio band
Option C:	Converting the phase modulation to FM
Option D:	Amplifying the higher audio frequencies
- r D.	1 \0

Q14.	In a broadcast superheterodyne receiver, the
Option A:	Local oscillator frequency is normally double the IF
Option B:	Local oscillator operates below the signal frequency
Option C:	
_	Mixer input must be tuned to the signal frequency
Option D:	RF amplifier normally works at 455 kHz above the carrier frequency
Q15.	One of the main functions of the RF amplifier in a superheterodyne receiver is to-
Option A:	Provide improved tracking
Option A:	Increase the tuning range of the receiver
Option C:	Improve the rejection of the image frequency
Option C:	
Option D.	Increase the tuning range of the receiver
Q16.	A superheterodyne receiver with an IF of 450 kHz is tuned to a signal at 1200 kHz.
Q10.	The image frequency is
Option A:	2100 kHz
Option B:	900 kHz
Option C:	800 kHz
Option C. Option D:	750 kHz
Option D:	/ JU KFIZ
Q17.	Sensitivity is defined as-
Option A:	Ability to reject unwanted signals
Option B:	Ability to reject unwanted signals Ability to convert incoming signal into Image Frequency
Option C:	Ability to reject noise
Option C. Option D:	Ability of receiver to amplify weak signals
Option D.	Ability of feceiver to ampiny weak signals
Q18.	A band-limited signal with a maximum frequency of 5 KHz to be sampled.
Q10.	According to the sampling theorem, the sampling frequency which is not valid is-
Option A:	12 KHz
Option B:	5 KHz
Option C:	15 KHz
Option D:	20 KHz
Option D.	20 KHZ
Q19.	Which of the following pulse modulation systems is analog?
Option A:	PWM
Option B:	Differential PCM
Option C:	PCM
Option C:	Delta
Option D.	Delta
Q20.	A distorted signal of frequency fm is recovered from a sampled signal if the sampling
220.	frequency fs is-
Option A:	fs=2fm
Option B:	fs>2fm
•	
Option C:	fs<2fm
Option D:	fs > = 2fm

Q21.	Calculate the minimum sampling rate to avoid aliasing when a continuous time
	signal is given by $x(t) = 5 \cos 400\pi t$
Option A:	100 Hz
Option B:	200 Hz
Option C:	300 Hz
Option D:	400 Hz
Q22.	Each signal in an FDM signal-
Option A:	Serves as a subcarrier
Option B:	Modulates the main carrier
Option C:	Is mixed with all the others before modulation
Option D:	Modulates the final carrier
Q23.	Quantizing noise occurs in-
Option A:	Pulse-width modulation
Option B:	Frequency division multiplex
Option C:	Pulse-code modulation
Option D:	Time-division multiplex
Q24.	The sharing of a medium and its link by two or devices is called
Option A:	Modulation
Option B:	Encoding
Option C:	Line discipline
Option D:	Multiplexing
Q25.	To separate channels in an FDM receiver, it is necessary to use-
Option A:	Bandpass filters
Option B:	AND gates
Option C:	Differentiation
Option D:	Integration

University of Mumbai

Examinations Commencing from 23rd December 2020 to 6th January 2021

Program: Electronics Engineering Curriculum Scheme: Rev2016 (CBCGS) Examination: Second Year Semester IV

Course Code: ELX401 and Course Name: Applied Mathematics-IV

Time: 2 hour Max. Marks: 80

Note: Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

0.1	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks
Q1.	Brachistocrone Problem is
Option A:	Minimal Surface area Problem
Option B:	Shortest Time Problem
Option C:	Shortest Distance Problem
Option D:	Solid of revolutionProblem
Q2.	If $f(x, y, y')$ is independent of y then the Euler Lagrange equation becomes
Option A:	$\left(\frac{\partial f}{\partial y} - \frac{d}{dx}\left(\frac{\partial f}{\partial y}\right)\right) = 0$
Option B:	$\left \frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right = 0$
Option C:	$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ $\frac{\partial f}{\partial y'} = C$
Option D:	$f - y' \frac{\partial f}{\partial y'} = C$
Q3.	If $u = (u_1, u_2, u_3, u_n)$ and $v = (v_1, v_2, v_3, v_n)$ are any two vectors in \mathbb{R}^n then which of the following holds
Option A:	$ u \cdot v \le u \cdot v $
Option B:	$ u \cdot v > u \cdot v $
Option C:	$ u \cdot v \ge u \cdot v $
Option D:	$ u \cdot v = u \cdot v \text{ for all u,v}$
Q4.	Find the value of k for which $u=(2,1,3)$ and $v=(1,7,k)$ are orthogonal
Option A:	k=-3
Option B:	k=3
Option C:	k=1
Option D:	k=2
Q5.	The set of matrices of order 2x2 of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ with usual addition and
	scalar multiplication is a vector space. Then what will be the additive identity?
Option A:	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Option B:	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
Option C:	$\begin{bmatrix} a & 0 \\ 0 & h \end{bmatrix}$

Ontion D	[0 0]
Option D:	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Q6.	The characteristic equation of the matrix $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$ is
Option A:	(x-1)(x-2)(x+2) = 0
Option B:	(x+2)(x+2)(x+1) = 0
Option C:	(x-2)(x-2)(x-1) = 0
Option D:	(x-1)(x-1)(x-2) = 0
Q7.	The eigen values of matrix A are 1,-1,2, then the eigen values of $A^2 - 3A + I$ are respectively
Option A:	-1,5,-1
ption B:	5,-1,11
Option C:	1,1,4
Option D:	-2,4,-2
Q8.	$\lambda = -3$ is the eigenvalue of $A = \begin{bmatrix} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{bmatrix}$. The eigenvector corresponding
	to eigenvalue $\lambda = -3$ is
Option A:	$[1-1\ 0]'$
Option B:	[1 2 3]'
Option C:	
Option D:	[1-11]'
Q9.	$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is similar to which of the following matrix?
Option A: Option B:	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} $ [1 0 0]
_	$ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} $
Option C:	
Option D:	$ \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} $
Q10.	A continuous random variable has probability density function $f(x) = 1 - \frac{4}{x^2}$, $x \ge 2$, and $f(x) = 0$ otherwise. Find mean
Option A:	2
Option B:	1/2
Option C:	4
Option D:	-1/2

Q11.	The r -th Moment of the probability distribution X about origin is
Option A:	$E(X^r)$
Option B:	$E(X)^3$
Option C:	$E(X^2)$
Option D:	E(X)
Option D.	
Q12.	If $V(X)=5$ Find $V(3X+2)=?$
Option A:	15
Option B:	17
Option C:	47
Option D:	45
Q13.	If mean is 2 and variance is 1 in Binomial distribution. Find number of trials in
O 1: A	experiment.
Option A:	16
Option B:	6
Option C:	3
Option D:	
Q14.	If coefficient of regression $b_{xy} > 1$ then
Option A:	$b_{yx} > 1$
Option B:	$b_{yx} < 1$
Option C:	$b_{vx} = 1$
Option D:	$b_{vx} = 0$
option D.	$\frac{y_{\chi\chi}-0}{ x }$
Q15.	What does it imply if coefficient of correlation is zero
Option A:	Perfect positive correlation
Option B:	positive correlation
Option C:	negative correlation
Option D:	No correlation
Q16.	Evaluate $\int_{Z} 2z dz$, where C is upper half of the circle $ z =1$
Option A:	1
Option B:	-1
Option C:	0
Option D:	$i\pi$
Q17.	Evaluate $\int_C \frac{z+6}{z^2-4} dz$, where C is the circle $ z =1$
Option A:	$i\pi$
Option B:	0
Option C:	$2 i\pi$
Option D:	π
	7
Q18.	Find the residue of $\frac{e^z}{(z-1)^3}$ at its pole
Option A:	e/2
Option B:	Е
option B.	

Option D:	e/4
Q19.	The nature of singularity of $f(z) = z^{-2}e^z$ has
Option A:	essential singularity at z=0
Option B:	removable singularity at z=0
Option C:	z=0 is a pole of order 2
Option D:	z=0 is a pole of order -2
Q20.	If f(z) is analytic in and on closed counter C then $\int_C f(z)dz = ?$
Option A:	1
Option B:	0
Option C:	$2 i\pi$
Option D:	π

Q2. (20 Marks)	Solve any Four out of Six	5 marks each
A	Use Rayleigh Ritz Method to solve boundary	value problem
A	$\int_0^1 (y^2 - {y'}^2 + 2xy) dx \text{ with } y(0) = 0, y(1) = 0$	
В	Construct an orthonormal basis for the subspace of R ³ by ap	plying Gram-
В	Schmidt process where $S=\{(1,2,0),(0,3,1)\}$	
	[7 4 -1]	
C	Show that $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \end{bmatrix}$ is derogatory.	
	$\begin{bmatrix} -4 & -4 & 4 \end{bmatrix}$	
	A discrete random variable has the probability density function	tion:
D	X -2 -1 0 1 2	3
D	P(X=x) 0.2 k 0.1 2k 0.1	2k
	Find k, mean and variance.	
	Calculate Spearman's rank correlation coefficient from the	following data
Г	X 18 20 34 52 12	_
Е	Y 39 23 35 18 46	
F	Expand $f(z) = \frac{z-1}{z^2-2z-3}$ about z=0 for 1< Z <3	

Q3.(20 Marks)	Solve any Four out of Six	5 marks each
A	Find the extremal of $\int_0^1 (xy + y^2 - 2y^2y') dx$	
В	Show that the set of vectors of the form (a,b,c) where b=a+subspace of R ³ under the usual addition and scalar multiplic	cation
С	Find A^{-1} by using Cayley-Hamilton theorem if $A = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 1 \\ 2 & -1 \\ -1 & 2 \end{bmatrix}$
D	A manufacturer known from his experience that the resistate he produces is normal with $\mu=100$ ohms and standard de ohms. What percentage of resistors will have resistance be and 102 ohams?	eviation $\sigma=2$
Е	The equations of regression lines are $3x+2y=26$ and $6x+y=$ Find mean \bar{x} , \bar{y} and coefficient of correlation r.	=31.
F	Evaluate $\int_C \frac{2z-1}{2(2z+1)(z+3)} dz$ using residue theorem, where 0	\mathbb{C} is $ \mathbf{Z} =1$.

Program: BE Electronics Engineering

Curriculum Scheme: Revised 2016 (CBCGS)

Examination: Second Year Semester IV

Course Code: ELX406 Course Name: LINEAR CONTROL SYSTEMS

Note:

Time: 1hour

- 1. All Questions are compulsory and carry equal marks.
- 2. Assume suitable data wherever necessary.

	•
Q1.	For an open loop system, which of the following is incorrect
Option A:	It is cheap
Option B:	Errors are large
Option C:	Systems are accurate
Option D:	output is independent of control input
Q2.	A control system in which control action issome how dependent on the output is
	called
Option A:	Open loop system
Option B:	Closed loop system
Option C:	Semi-closed loop system
Option D:	Semi-open loop system
Q3.	In a positive feedback system, overall gain will be
Option A:	Decreased
Option B:	Increased
Option C:	Zero
Option D:	unaffected
Q4.	In force current analogy, spring is analogous to
Option A:	C
Option B:	1/C
Option C:	L
Option D:	1/L
Q5.	The transfer function of the circuit

Max. Marks: 50

Option A:	R+RCs
-	
Option B:	1/(1+RCs)
Option C:	R+ 1/Cs
Option D:	R+Cs
Q6.	What is the overall transfer function of a positive unity feedback system with forward gain as G
Option A:	G/(1+GH)
Option B:	G/(1+G)
Option C:	GH/(1+G)
Option D:	G/(1-G)
Q7.	The overall transfer function of the block diagram is
Option A:	(G1-G2)/(1+H)
Option B:	(G1+G2)/(1+H)
Option C:	G1G2/(1+G1G2H)
Option D:	G1G2/(1-G1G2H)
Q8.	Which of the following is not a rule of root locus plot
Option A:	The root locus starts from open loop pole
Option B:	The number of separate branches is equal to number of open loop poles or zeroes
Option C:	Root locus is symmetrical about the imaginary axis
Option D:	The root locus branches are finally parallel to the asymptotes.
Q9.	In root locus plots, the angle of asymptotes is calculated by, where P= no of poles, Z = no of zeros, k=0,1,2
Option A:	(2k+1)180/(P+Z)
Option B:	(2k+1)180/(P-Z)
Option C:	(k+1)180/(P-Z)
Option D:	(k+1)180/(P+Z)
- F 311 2 ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Q10.	The Bode plot for a numerator term (1+5s), will have a corner frequency of
2.0.	and change of slope at the corner frequency will be
Option A:	5, 20db/d
- F	2 D 2 g 2

Ontion P:	1/5 20db/d
Option B:	1/5, 20db/d
Option C:	5, -20db/d
Option D:	1/5, -20db/d
011	
Q11.	In Bode plot, there is a corner frequency of 0.5 and at that frequency ther change f
	slope is -40db/d, this indicates presence of term in
Option A:	(4+s ²), numerator
Option B:	(1+4s), denominator
Option C:	(4+s ²), numerator
Option D:	$(1+4s^2)$, denominator
Q12.	The open loop transfer function of a unity feedback system is
	$G(s) = \frac{50}{(1+0.1s)(s+10)}$, Find Kp.
	(1+0.1s)(s+10), That Rp.
0 1: 1	
Option A:	
Option B:	
Option C:	5
Option D:	0.2
Q13.	What is the type of system for a unity feedback $G(s) = \frac{10(s+1)}{s^2(s+2)(s+10)}$
Option A:	$\frac{s^2(s+2)(s+10)}{2}$
Option B:	5
Option C:	10
Option C:	4
Option D.	4
Q14.	For a phase lead network,
Option A:	Pole is nearer to the origin
Option B:	
	Pole is in the right half of s-plane
Option C:	Zero is nearer to the origin
Option D:	Zero is in the right half of s-plane
015	Which of the following is not true for a phase lead network
Q15.	Which of the following is not true for a phase lead network Band width reduces
Option A:	
Option B:	Speed of response increases
Option C:	Overshoot reduces
Option D:	Steady state error does not show improvement.
016	When a man to add discolar form of the discolar for
Q16.	When a zero is added in the forward path, which of the following is not true
Option A:	Band width increases
Option B:	Time rise reduces
Option C:	Settling time reduces
Option D:	System becomes more stable
Q17.	According to the property of state transition method, e ⁰ is equal to
Option A:	I

Option B:	A
Option C:	e ^{-At}
Option D:	-e ^{-At}
1	
Q18.	The state model for $G(s) = 1/(s^2+5s+6)$ can be
Option A:	$A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Option B:	$A = \begin{bmatrix} 0 & 1 \\ 6 & -5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Option C:	$A = \begin{bmatrix} 0 & 1 \\ 6 & -5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Option D:	$A = \begin{bmatrix} 0 & 1 \\ 6 & 5 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Q19.	Which of the following will be a stable system, according to Nyquist criteria
Option A:	Gain margin= positive, phase margin= negative
Option B:	Gain margin= positive, phase margin= negative Gain margin= negative, phase margin= negative
Option C:	Gain margin= positive, phase margin= positive
Option C:	Gain margin= positive, phase margin= positive Gain margin= negative, phase margin= positive
Орион В.	Gain margin negative, phase margin positive
Q20.	The closing of Nyquist plot from $\omega = -j0$ to $\omega = j0$ depends on
Option A:	Type of system
Option B:	Number of poles
Option C:	Number of zeros
Option D:	Difference between nom of poles and zeros.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q21.	Transfer function is defined as the laplace transform of output divided by the laplace transform of input with initial conditions as
Option A:	0
Option B:	
Option C:	10
Option D:	infinite
1	
Q22.	For given characteristics equation which having roots on right hand side
Option A:	$s^2 + 4s + 1$
Option B:	$s^2 - 4s + 1$
Option C:	$s^3 + 4s^2 + 3s + 1$
Option D:	6s+1
Q23.	In root locus plots, the breakaway points are calculated by equating
Option A:	dK/ds=1
Option B:	$\frac{dK/ds=1}{dK/ds=180}$
Option C:	dK/ds=infinite
option C.	OLE GO MILLION

Option D:	dK/ds=0
Q24.	What are the error coefficients for $G(S) = \frac{40(S+2)}{S(S+1)(S+4)}$
Option A:	$Kp = \infty$, $Kv = 20$, $Ka = 0$
Option B:	$Kp = 20$, $Kv = \infty$, $Ka = 0$
Option C:	$Kp = 0$, $Kv = 20$, $Ka = \infty$
Option D:	$Kp = \infty$, $Kv = 0$, $Ka = 20$
Q25.	which is not the static error coefficient
Option A:	$K p = \lim_{S \to 0} G(S)H(S)$
Option B:	$K v = \lim_{S \to 0} S G(S) H(S)$
Option C:	$K a = \lim_{S \to 0} S2 G(S)H(S)$
Option D:	$K r = \lim_{S \to 0} S3 G(S)H(S)$