Sample paper: ESE: Power Electronics Systems Design-April 2021

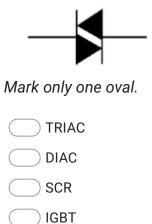
414	_						- 1
*	ĸ	Δ	^	ш	ır	Δ.	а
	ı١	c	ч	u	ш	C	u

1.	Email address *

Academic Year: 2020-21			
Subject: Power Electronic System Design			
Semester: M.E.I (CBCS) Branch: Electronics Engineering			
Date: 11/4/2021 Time: 2:30PM-4:30PM Marks: 80			

Theory Examination

Instructions: 1) All questions in Q1 are Multiple Choice Questions.


- 2) Select the correct answer from the choices.
- 3) Upload the answers in PDF format for Q2 and Q3.

2.	Name: *
3.	Email address: *
4.	Class: *

Q.1 All questions are compulsory. Each question carries 2 marks.

5.	1. The Silicon Controlled Rectifier (SCR) can be turned on by *
	Mark only one oval.
	decreasing dv/dt above rated reducing breakover voltage
	By applying sharp rising pulse at anode
	increasing dv/dt above rated value
6.	2. Which among the following power devices has highest current and voltage handling capability? *
	Mark only one oval.
	power BJT
	power MOSFET
	SCR
	IGBT
7.	3. The minimum requirement to turn on IGBT is *
	Mark only one oval.
	Vds>0, lg>lgth
	Vds=0, Ig<0
	Vds<0, Ig>0
	lg>0

4. This symbol is for * 8.

5. The advantage of class B commutation circuit over class A is that *

Mark only one oval.

On time of SCR is controllable
Off time of SCR is controllable
SCR carries the load current
commutation circuit does not carry the load current.

6. The advantage of auxiliary commutation circuit over other classes of 10. commutation circuits is *

wark only one oval.
On time of SCR is controllable
Off time of SCR is controllable
Commutation circuit does not carry the load current
On time and off time of SCR controllable and commutation circuit does't carry load current

11.	7. Which of the following triggering method doesn`t allow change in firing angle of SCR beyond 90 degrees? *
	Mark only one oval.
	R triggering
	RC triggering
	UJT triggering
	cosine triggering
12.	8. Which among these can be used for over current protection of SCR? *
	Mark only one oval.
	FACLF
	MOV
	snubber circuit
	zener diode
13.	9. Inductor is used in series with SCR for *
	Mark only one oval.
	overcurrent protection
	overvoltage protection
	high dv/dt
	high di/dt

14.	10. The major sources of Electromagnetic Interference in power circuits are *				
	Mark only one oval.				
	high current flowing in circuits				
	high dv/dt and high di/dt				
	derating of power devices				
	low frequency operation				
15.	11. Snubber circuit used to limit dv/dt of SCR consists of and is connected in with SCR. *				
	Mark only one oval.				
	resistor in parallel to capacitor, series				
	resistor in series with a capacitor, parallel				
	only resistor, series				
	MOV, paralle				
16.	12. The capacitance of reverse biased junction of the SCR is 25µf. The limiting value of charging current to turn on the SCR is 16mA. Find the critical value of dv/dt of SCR is *				
	Mark only one oval.				
	800V/µsec				
	640V/µsec				
	460V/µsec				
	500V/μsec				

17.	13. The two common EMC issues are *
	Mark only one oval.
	emission and susceptibility
	high current and voltage fluctuations
	high frequency
	derating of components
18.	14. Anti-saturation protection circuit for BJT is used for *
	Mark only one oval.
	temperature protection
	reducing switching time
	increasing current capability
	decreasing di/dt
19.	15. Heatsinks are used for *
	Mark only one oval.
	temperature protection
	reducing dv/dt
	reducing di/dt
	reducing EMI issues

20.	16. In single phase ac voltage controller with R load * Mark only one oval.				
	only positive cycle can be controlled both cycles can be controlled only negative cycle can be controlled				
	control over 90 degree is possible				
21.	17. A distribution system is more reliable than the distributionsystem. *				
	Mark only one oval.				
	parallel, radial				
	parallel, ring				
	radial, parallel				
	ring, parallel				
22.	18. Which block is mandatory in Matlab simulink for power electronics simulations? *				
	Mark only one oval.				
	FFT analysis				
	powergui				
	powergrid				
	scope				

23.	. 19is a progra	m to simulate analog and digital logic circuits. *
	Mark only one oval.	
	PSpice	
	Matlab	
	Scilab	
	NS3	
24.	20. 3 phase controlled rect	ifier consists ofdiodes andSCRs. *
	Mark only one oval.	
	0,6	
	6,0	
	3,3	
	6,6	
Q2	Q2. Solve any 2 out of 3. (10 ma	arks each)
25.		d rectifier with R load. 2. Explain distributed generation a. 3. Differentiate between various types of simulation ectronics designs. *
	Files submitted:	
Q3	Q3. Solve any 2 out of 3. (10 ma	arks each)
26.	use Heun `s method to app parallel operation of invert	Given a initial value problem y(1)(t)=1-t.y(t) with y(0)=1 proximate y(1) and y(0.5). Use step size h=1. 2. Explain ers in master and slave mode of control. 3. Explain PID atrol system of AC/DC converter. Also comment on its ad. *
	Files submitted:	

This content is neither created nor endorsed by Google.

Google Forms