SAMPLE QUESTION PAPER

SE (ELECTRONICS)

R-2012

Subject: PRINCIPLE OF CONTROL SYSTEM

ALL Questions carry equal marks (02 EACH)

1. Find C(s)/R(s) for the block diagram below

- 2. In a signal flow graph , an input node is one on which
- a) Only incoming branches are connected
- b) Only outgoing branches are connected
- c) Both incoming and outgoing branches are connected
- d) All the nodes are connected.
- 3. Vo(s)/Vi(s) for the circuit below is

a)
$$\frac{1+R_1+R_2}{1+R_1Cs}$$

b)
$$\frac{1+R_1Cs+_2Cs}{2}$$

c)
$$\frac{1+R_1CS}{1+R_1CS+R_2CS}$$

d)
$$\frac{1+R_2Cs}{1+R_1Cs+R_2}$$

5. The initial slope of Bode plot for open loop transfer function is

- a) +20db/d b)-20db/d c) 40db/d d) -40 db/d
- 6. In order to stability of a system from Bode plot
 - a) Only Gain margin should be positive
 - b) Only phase margin should be positive
 - c) Both gain and phase margin should be positive
 - d) Neither gain nor phase margin should be positive
- 7. The analysis of control system using state space approach is carried out in ______ by representing a system in the form of ______
 - a) Time domain, first order differential equations
 - b) Frequency domain, first order differential equations
 - c) Time domain, second order differential equations
 - d) frequency domain, second order differential equations
- 8. The angle and magnitude condition for a stable system in root locus approach is
 - a) $\angle G(s)H(s) = \pm (2q-1)180^{\circ}$ and |G(s)H(s)| = -1
 - b) $\angle G(s)H(s) = \pm (q+1)180^{0}$ and |G(s)H(s)| = 1
 - c) $\angle G(s)H(s) = \pm (2q+1)180^{\circ}$ and |G(s)H(s)| = 1
 - d) $\angle G(s)H(s) = \pm (q+1)180^{\circ}$ and |G(s)H(s)| = -1

9. The root locus plot starts from _____ nd ends at _____

- a) Open loop zero, open loop pole
- b) Infinity , open loop pole
- c) Open loop pole, open loop zero or infinity
- d) Infinity, open loop zero
- 10. The number of branches of root locus plot for $G(s)H(s)=K/(s+2)^3$
 - a) 1 b) 2 c) 3 d) 4
- 11. The Nyquist plot for G(s)H(s)=10/s(s+1)(s+_2) will cross the real axis axis at
 - a) 8+j0
 - b) -0.8+j0
 - c) 0.8+j0
 - d) 0+j8

12. The velocity error constant for G(s)H(s)=10(1+s)/s(1+2s) will be

- a) 1 b) 10 c)5 d) 0
- 13. The velocity error constant for G(s)H(s)=10(1+s)/s(1+2s) will be

a)1 b) 10 c)5 d) 0

14. The steady state response of a system is that part of time response that goes to

_____ as time goes to ______

- b) Infinity, infinity
- c) Zero, infinity
- d) Zero, zero

a) Infinity, zero

- 15. The laplace transform of unit ramp function is
 - a) 1 b) 1/s c) 1/s² d) 1/s³
- 16. In order to find stability from routh Hurwitz criteria, the number of ______ in the first column of array, indicates ______
 - a) Zeros, no. of roots with positive real part
 - b) ones, no. of roots with positive real part
 - c) sign changes, no. of roots with positive real part
 - d) sign changes, no. of roots with negative real part
- 17. The range of K for for stability for characteristic equation $s^3+2ks^2+(k+2)s+4=0$ is
 - a) K=1
 - b) K>2.73
 - c) K<2.73
 - d) K>10

18. Using the property of state transition matrix $\phi^{-1}(t) =$ _____

- a) $\emptyset^{-1}(-t)$
- b) $\emptyset^{-1}(0)$
- c) $\phi^{-1}(t)$
- d) I
- 19. According to Kalman's test, a linear time invariant continuos system described by state equations

 $[\dot{X}] = [A][X] + [B][U]$

[Y]=[C][X]

Is completely controllable if the rank of ______ matrix is equal to n

- a) [B : AB : AB²: : ABⁿ⁻¹]
- b) [A : AB :AB²: :ABⁿ⁻¹]
- c) [B : AB :A²B: :Aⁿ⁻¹B]
- d) [B : AB : A²B: : Aⁿ⁻¹B]
- 20. Gain margin is the reciprocal of magnitude |G(jw)| at the frequency at which
 - a) Phase angle is -180
 - b) Phase angle is -120
 - c) Phase angle is 0
 - d) Phase angle has no relation.
- 21. The gain crossover frequency is one where the magnitude of open transfer function is
 - a) 10 db
 - b) 1db
 - c) 0 db
 - d) -1db
- 22. When a pole is added in the forward path of a second order system
 - a) Band width decrease
 - b) Rise time reduces

- c) Resonant peak reduces
- d) System becomes more stable
- 23. Which of the following is not time response specification
 - a) Maximum overshoot
 - b) Delay time
 - c) Rise time
 - d) Band width
- 24. If initial slope of Bode plot is +20 b/d, it indicates presence of
 - a) Zero at origin
 - b) Pole at origin
 - c) Zero at infinity
 - d) Pole at infinity
- 25. The check for , a part of real axis lies on root locus , is
 - a) If number of poles to the right of section is odd
 - b) If number of zeros to the right of section is odd
 - c) If number of poles plus zeroes to the right of section is even.
 - d) If number of poles plus zeroes to the right of section is odd