Program: BE Electronics & Computer Science

Curriculum Scheme: Revised 2019

Examination: Second Year Semester IV

Course Code: ELC401 Course Name: Engineering Mathematics-IV

Time: 2 hr 30 mins Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along $y = x$	
Option A:	1	
Option B:	6	
Option C:	-1	
Option D:	0	
2.	Evaluate $\int_C \frac{dz}{z^3(z+4)}$ where C is the circle $ z =2$	
Option A:	0	
Option B:	лі/32	
Option C:	1	
Option D:	4	
3.	Compute a coefficient of correlation between X & Y X 3 6 4 5 7 Y 2 4 5 3 6	
Option A:	1	
Option B:	0.7	
Option C:	2	
Option D:	4	
4.	Find the extremals of $\int_{x_1}^{x_2} \frac{y'^2}{x^2} dx$	
Option A:	$y = c_1 x^3 + c_2$	
Option B:	$y = c_1 x + c_2$	
Option C:	$y = c_1 x^5 + c_2$ $y = c_1 x^6 + c_2$	
Option D:	$y = c_1 x^6 + c_2$	
5.	Find k if pdf of rv X is X	
Option A:	1/5	
Option B:	1/49	
Option C:	2	
Option D:	7	

6.	Which trial equation Raleigh-Ritz method assume?
Option A:	$\overline{y}(x) = a + bx + cx^2$
Option B:	$\bar{y}(x) = ax + bx^2$
Option C:	$\bar{y}(x) = a + bx$
Option D:	$\overline{y}(x) = a + bx^2$
7.	Find E(X) if $f(x) = x$ $0 \le x \le 1$
Option A:	1/3
Option B:	1
Option C:	2
Option D:	0
8.	If $u = (2,1,0)$ then $ u $
Option A:	$\sqrt{50}$
Option B:	$\sqrt{3}$
Option C:	$\sqrt{5}$
Option D:	V5
Option D.	1
9.	The matrix form of the Quadratic form $x^2 - 2y^2 + 3z^2 - 4xy + xz - 2yz$ is
Option A:	$\begin{bmatrix} 1 & -2 & 1/2 \end{bmatrix} \begin{bmatrix} r \end{bmatrix}$
•	$ \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1 & -2 & 1/2 \\ -2 & -2 & -1 \\ 1/2 & -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} $
Option B:	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$
	y 2 -2 -1
	$\begin{vmatrix} z & 1/2 & 1 & 3 \end{vmatrix}$
Option C:	$\begin{bmatrix} 1 & -2 & 1/2 \end{bmatrix}$
	$\begin{vmatrix} -2 & -2 & -1 \end{vmatrix} \begin{bmatrix} x & y & z \end{bmatrix}$
	$\begin{vmatrix} 1/2 & -1 & 3 \end{vmatrix}$
Option D:	
	$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
Q.10	If $u = (2,1,0) & v = (1,-1,0)$ then $u-v$ is
Option A:	(1,1,1)
Option B:	(1,2,0)
Option C:	(2,1,1)
Option D:	(0,0,0)

Q2	Solve any Four out of Six	5 marks each
A	Evaluate where C is the circle $\int_C \frac{e^{2z}}{(z-1)(z-2)}$	dz dz, where c is $ z =3$.
В	Fit a straight line to the following data X: 6 2 8 5 8 Y: 4 5 6 7 9	
С	For a normal variate with mean 30 and probability $P(5 \le X \le 18)$.	standard deviation 6. Find the
D	Find a vector orthogonal to both $u = (-6,4,$	2) and $v = (3,1,5)$.
Е	Reduce the quadratic form $x^2-y^2+5z^2+2xy+2y$ congruent transformations.	yz+4xz to canonical form using
F	Find the extremals of $\int_{x_1}^{x_2} \frac{yr^2}{x^3} dx$.	

Q3	Solve any Four out of Six	5 marks each	
A	Using residue theorem evaluate $\int_C \frac{3z^2+z}{z^2-1} dz$ at $ z =2$		
В	Calculate R from the following data X: 3 7 2 7 2 Y: 13 19 17 15 21		
С	Three factories A, B, C produce 30%, 50% and 20 % of the total production of an item. Out of their production 80%, 50% and 10% are defective. An item is chosen at random and found to be defective. Find the probability that it was produced by the factory A.		
D	Construct an orthonormal basis of R^3 Using Gram-Schmidt process to $S=\{(1,2,0),(0,3,1)\}$.		
Е	Reduce the quadratic form to Diagonal form Also find its rank & signature.	$. 6x^2-y^2+14z^2+2xy+2yz+4xz$	
F	Find the extremals of $\int_{x_1}^{x_2} (2xy - y''^2) dx dx$		

Q4	Solve any Four out of Six 5 marks each
A	Expand $f(z) = \frac{1}{(z-1)(z+2)}$ about $z = -1$
В	Calculate r from the following data X: 12
С	Fit a poission distribution to the following data No. of deaths: 0 1 2 3 4 Frequencies: 120 60 12 1 2
D	Let V be a set of positive real numbers with addition and scalar multiplication defined as $(a,b)+(c,d)=(a+c,b*d)$ and $K(a,b)=(ka,0)$ Show that V is a vector space under this addition and scalar multiplication.
Е	Find the singular value decomposition of $[4 \ 4 \ -3 \ 3]$.
F	Using Rayleigh-Ritz method , solve the boundary value problem $\int_{x0}^{x1} (2xy - y^2 - y'^2) \mathrm{d}x \; ; \; 0 \le x \le 1 \; \text{given y}(0) = y \; (1) = 0 \; .$