Examinations Commencing from 22nd November2021 to 5thJanuary 2022 Program: Electronics Engineering Curriculum Scheme: Rev2019 Examination:TE Semester V Course Code: ELC502 and Course Name: Digital Signal Processing

Time: 2 hour 30 minutes

_

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks			
1.	Number of complex additions and complex multiplications in DFT are:			
Option A:	N(N-1) and N ²			
Option B:	N ² and N			
Option C:	N* log (N) and (N-1			
Option D:	N and N ²			
2.	If sequence x[n] = {1, 2, 3, 4} have its DFT X[k] ={A, B, C, D} then x1[n] = {1, 4, 3,2} will have its DFT X1[k] equal to			
Option A:	X1[k] = {A, D, C, B}			
Option B:	$X1[k] = \{A, B, C, D\}$			
Option C:	$X1[k] = \{A, D, B, C\}$			
Option D:	$X1[k] = \{A, B, D, C\}$			
3.	What is the lowest order of the Butterworth filter with a pass band gain KP=-1 dB at Ω P=4 rad/sec and stop band attenuation greater than or equal to 20dB at Ω S = 8 rad/sec?			
Option A:	4			
Option B:	5			
Option C:	6			
Option D:	3			
4.	A 3 stage decimator is used to reduce the sampling rate from 3072 kHz to 48 kHz. What is the overall decimation factor?			
Option A:	64			
Option B:	32			
Option C:	128			
Option D:	256			
5.	Antipliacing filter is required			
	Antialiasing filter is required			
Option A: Option B:	before down sampling			
_	before up sampling			
Option C:	After down sampling			
Option D:	After up sampling			
6.	Impulse invariant method is suitable for the following type of digital filters			
Option A:	Low pass filters			
Option R:	High Pass filters			
Option D.				

Option C:	Bandpass filters	
Option D:	Bandstop filters	
7.	The transfer function of an FIR linear phase is	
	$H(z)= 1+2z^{-1}+2z^{-2}+z^{-3}$. Classify the filter type.	
Option A:	1	
Option B:	2	
Option C:	3	
Option D:	4	
8.	Find the digital transfer function H(z) by using impulse invariant method for the	
	analog transfer function H(s)= 1/(s+2). Assume T=0.5 sec	
Option A:	H(z)= 1/(1-e^(-1) z^(-1))	
Option B:	H(z)= 1/(1-e^1 z^(-1))	
Option C:	H(z)= 1/(1-e^(-1) z^1)	
Option D:	H(z)= 1/(1-e^(-2) z^(-1))	
9.	The steady state noise power due to input quantization is given by	
Option A:	$\sigma_e^2 = \frac{2^{-b}}{12}$	
Option B:	$\sigma_e^2 = \frac{2^{-2b}}{2}$	
Option C:	$\sigma_e^2 = \frac{2^{-2b}}{12}$	
Option D:	$\sigma_{e}^{2} = \frac{2^{-b}}{12}$ $\sigma_{e}^{2} = \frac{2^{-2b}}{2}$ $\sigma_{e}^{2} = \frac{2^{-2b}}{12}$ $\sigma_{e}^{2} = \frac{2^{-2b}}{12}$ $\sigma_{e}^{2} = \frac{2^{-4b}}{3}$	
10.	Which processor is having 2 multipliers?	
Option A:	TMS3201X	
Option B:	TMS3203X	
Option C:	TMS3205X	
Option D:	TMS3206X	

Q2.	Solve any Four out of Six (5 marks each)
(20 Marks)	
А	What is multirate processing? Where it is used? Explain in brief process of Interpolation and Decimation.
В	List various addressing modes of TMS320c67xx DSP processor
С	Give the properties of Twiddle Factor
D	What are overflow limit cycle oscillations?
E	What is Frequency wrapping?
F	Determine the frequency response of FIR filter defined by $y[n] = 0.25x[n]+x[n-1]+0.25x[n-2]$. Calculate the phase delay and group delay.

Q3. (20 Marks)	Solve any Two Questions out of Three (10 marks each)			
А	Find the DFT of the sequence $x[n] = \{1,2,3,4,4,3,2,1\}$ using DIF FFT algorithm.			
В	Find the order of Butterworth digital filter with following			

	specifications:	Stopband gain (As)=0.18	Passband gain	(Ap) =0.89
	Stopband	frequency(ws)=0.6π	rad/sample,	Passband
	frequency(wp)=0.4 π rad/sample Sampling period is 1 second.			
С	Explain the applications of DSP processor in speech signal processing			

Q4. (20 Marks)	Solve any Two Questions out of Three (10 marks each)
A	The output signal of an A/D converter is passed through a first order low pass filter with transfer function given by $H(z) = \frac{0.5z}{z-0.5}$. Find the steady state output noise from digital filter, when the input signal is quantized to have eight bits.
В	Perform the circular convolution of the following sequences $x[n] = [1 \ 1 \ 2 \ 1]$, $h[n] = [1 \ 2 \ 3 \ -1]$ using DFT and IDFT method.
С	Using a rectangular window technique design a lowpass filter with passband gain of unity, cutoff frequency of 1000Hz and working at a sampling frequency of 5 KHz. The length of impulse response should be 7.