SAMPLE PAPER

Examinations Commencing from 23rd December 2020 to 6th January 2021

Program: **Electronics Engineering**Curriculum Scheme: Rev 2016
Examination: BE Semester VII

Course Code: ELX703 Course Name: Digital Signal Processing

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions ar compulsory and carry equal marks
1.	One of the output values in the 4 point DFT of the sequence x(n)={5,6,7,8} is
Option A:	25
Option B:	29
Option C:	26
Option D:	30
2.	The energy of the sequence whose DFT is {6,-2+2j, -2, -2-2j} is
Option A:	14
Option B:	16
Option C:	18
Option D:	20
3.	Compute DFT of the sequence x(n)= [1,1,0,0]
Option A:	[2,1-j,1,1+j]
Option B:	[2,1-j,0,1+j]
Option C:	[2,1+j,0,1-j]
Option D:	[2,1+j,1,1-j]
4.	If N= 16, the total number of complex multiplications and additions required respectively for computing N point DFT by radix-2 FFT are
Option A:	80 and 64
Option B:	64 and 80
Option C:	32 and 64
Option D:	24 and 12
5.	Number of complex additions and complex multiplications in DFT are:

Option A:	N(N-1) and N ²
Option B:	N ² and N
Option C:	N* log (N) and (N-1)
Option D:	N and N ²
6.	In the impulse invariant transformation RHS of S plane is mapped to
Option A:	Inside the unit circle in the Z plane
Option B:	Outside the unit circle in the Z plane
Option C:	On to the unit circle in the Z plane
Option D:	RHS of the Z plane
7.	In Butterworth and Chebyshev transfer function, when N is even, the nature of poles are
Option A:	Complex and exist as conjugate pairs
Option B:	Complex but not conjugate pairs
Option C:	One pole is complex and other poles are real
Option D:	One pole is real and other poles are complex and conjugate
8.	The roots of an Nth order Chebyshev polynomial Cn(x) occur in the interval
Option A:	0<=x<=1
Option B:	-1<=x<=0
Option C:	-1<=x<=1
Option D:	-0.5<=x<=0.5
9.	Find the digital transfer function $H(z)$ by using impulse invariant method for the analog transfer function $H(s)=1/(s+2)$. Assume $T=0.5$ sec
Option A:	$H(z)=1/(1-e^{(-1)}z^{(-1)})$
Option B:	H(z)= 1/(1-e^1 z^(-1))
Option C:	$H(z)=1/(1-e^{-1}z^{1})$
Option D:	H(z)= 1/(1-e^(-2) z^(-1))
10.	Linear FIR filter which is having even symmetry and even length is called
Option A:	Type 1
Option B:	Type 2
Option C:	Type 3
Option D:	Type 4
11.	For a digital bandstop filter with lower stop band edge frequency 100 Hz and upper stop band edge frequency 200 Hz and sampling frequency 1 khz, what is the filter coefficient at n=0, ie h(0) is

Option A:	0.2
Option B:	0.8
Option C:	0.4
Option D:	0.6
орион 21	
12.	What is the width of the main lobe of the frequency response of a rectangular window of length M ?
Option A:	π/Μ
Option B:	2π/M
Option C:	$4\pi/M$
Option D:	8π/M
13.	If an FIR filter has constant phase delay as well as constant group delay and N is odd then it is of type
Option A:	Type I
Option B:	Type II
Option C:	Type III
Option D:	Type IV
•	
14.	The dynamic range in bits in image processing applications is of the order of
Option A:	10 bits
Option B:	20 bits
Option C:	30 bits
Option D:	70 bits
15.	How is the sensitivity of filter coefficient quantization for FIR filters?
Option A:	High
Option B:	Low
Option C:	Moderate
Option D:	Unpredictable
16.	A 3 stage decimator is used to reduce the sampling rate from 3072 kHz to 48 kHz. What is the overall decimation factor?
Option A:	64
Option B:	32
Option C:	128
Option D:	256
17.	Consider the discrete time sequence: $x(n) = \{1, 2, 3, 4\}$. Converting the sampling rate by a factor ($\frac{2}{3}$) will result in:
Option A:	{1, 0, 2, 0, 3, 0, 4, 0}
27	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

Option B:	{1, 0, 4}
Option C:	{1, 3}
Option D:	{1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0}
18.	How many clock cycles are required when the MACD instruction is to be
	executed in a machine with Von Neumann Architecture?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
19.	Which processor is having 2 multipliers?
Option A:	TMS320C10
Option B:	TMS320C6200
Option C:	DSP56300
Option D:	TMS320C50
20.	Which of the following DSP processor family has VLIW architecture?
Option A:	TMS3201X
Option B:	TMS3203X
Option C:	TMS3205X
Option D:	TMS3206X

Q2.	Solve any TWO out of the given three questions. All the sub questions carry 10 marks each .Total marks for this question is 20 marks (20)
A	Find the DFT using decimation in frequency FFT algorithm.
	$x(n)=\{1,2,1,2,0,2,1,2\}$
	Design a lowpass FIR filter with 11 coefficients for the following
	specifications.
В	Passband edge frequency=0.25 kHz.
	Sampling frequency=1 kHz
	Use a)Hamming window. b)Hanning window
	Given the transfer function $H(z)=H_1(z).H_2(z)$
C	Where $H_1(z)=1/(1-a_1z^{-1})$, $H_2(z)=1/(1-a_2z^{-1})$.
C	Find the output roundoff noise power .Assume $a_1=0.5$ and $a_2=0.6$ and find
	the output roundoff noise power

Q3.	Solve any TWO out of the given three questions. All the sub questions carry 10 marks each .Total marks for this question is 20 marks (20)
A	A highpass digital filter meeting the following specifications is required. Passband 2-4 kHz, Stopband=0-500 Hz Passband ripple=3 db Stopband attenuation =20db .Sampling frequency=8 kHz. Assume butterworth characteristics and use bilinear transformation.
В	Explain the process of decimation by a factor D with block diagrams. Draw the spectral diagrams.
С	Draw the block diagram of a 3 rd generation fixed point DSP processor and explain the features.