SAMPLE PAPER

Examinations Commencing from 20th November 2021 to 6th January 2022

Program: Electronics Engineering

Curriculum Scheme: Rev 2016

Examination: BE Semester VII

Course Code: ELX703 Course Name: Digital Signal Processing

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (20 marks)
1.	The energy of the sequence whose DFT is {6,-2+2j, -2, -2-2j} is
Option A:	14
Option B:	16
Option C:	18
Option D:	20
2.	Compute DFT of the sequence x(n)= [1,1,0,0]
Option A:	[2,1-j,1,1+j]
Option B:	[2,1-j,0,1+j]
Option C:	[2,1+j,0,1-j]
Option D:	[2,1+j,1,1-j]
3.	If N= 16, the total number of complex multiplications and additions required
	respectively for computing N point DFT by radix-2 FFT are
Option A:	80 and 64
Option B:	64 and 80
Option C:	32 and 64
Option D:	24 and 12
4.	In Butterworth and Chebyshev transfer function, when N is even, the nature of
	poles are
Option A:	Complex and exist as conjugate pairs
Option B:	Complex but not conjugate pairs
Option C:	One pole is complex and other poles are real
Option D:	One pole is real and other poles are complex and conjugate
5.	Find the digital transfer function H(z) by using impulse invariant method for the
	analog transfer function H(s)= 1/(s+2). Assume T=0.5 sec

Option A:	H(z)= 1/(1-e^(-1) z^(-1))
Option B:	H(z)= 1/(1-e^1 z^(-1))
Option C:	H(z)= 1/(1-e^(-1) z^1)
Option D:	H(z)= 1/(1-e^(-2) z^(-1))
6.	Linear FIR filter which is having even symmetry and even length is called
Option A:	Type 1
Option B:	Type 2
Option C:	Туре 3
Option D:	Type 4
7.	For a digital bandstop filter with lower stop band edge frequency 100 Hz and upper stop band edge frequency 200 Hz and sampling frequency 1 khz, what is the filter coefficient at n=0, ie h(0) is
Option A:	0.2
Option B:	0.8
Option C:	0.4
Option D:	0.6
8.	How is the sensitivity of filter coefficient quantization for FIR filters?
Option A:	High
Option B:	Low
Option C:	Moderate
Option D:	Unpredictable
9.	A 3 stage decimator is used to reduce the sampling rate from 3072 kHz to 48 kHz. What is the overall decimation factor?
Option A:	64
Option B:	32
Option C:	128
Option D:	256
10.	Which of the following DSP processor family has VLIW architecture?
Option A:	TMS3201X
Option B:	TMS3203X
Option C:	TMS3205X
Option D:	TMS3206X

Q2.	Solve any TWO out of the given three questions. All the sub questions carry 10 marks each .Total marks for this question is 20 marks (20)
А	Find the DFT using decimation in frequency FFT algorithm. x(n) = (1, 2, 1, 2, 0, 2, 1, 2)
В	X(II)={1,2,1,2,0,2,1,2} Design a lowpass FIR filter with 11 coefficients for the following specifications . Passband edge frequency=0.25 kHz. Sampling frequency=1 kHz Use a)Hamming window. b)Hanning window
С	Given the transfer function $H(z)=H_1(z).H_2(z)$ Where $H_1(z)=1/(1-a_1z^{-1})$, $H_2(z)=1/(1-a_2z^{-1})$.Find the output roundoff noise power .Assume $a_1=0.5$ and $a_2=0.6$ and findthe output roundoff noise power

Q3.	Solve any TWO out of the given three questions. All the sub questions carry 10 marks each .Total marks for this question is 20 marks (20)
А	A highpass digital filter meeting the following specifications is required. Passband 2-4 kHz, Stopband=0-500 Hz Passband ripple=3 db Stopband attenuation =20db .Sampling frequency=8 kHz.
В	Explain the process of decimation by a factor D with block diagrams.Draw the spectral diagrams.
С	Draw the block diagram of a 3 rd generation fixed point DSP processor and explain the features.

Q4.	Solve any TWO out of the given three questions. All the sub questions carry 10 marks each .Total marks for this question is 20 marks (20)
А	Explain any two DSP applications.
В	Explain Harvard architecture with diagrams.
С	Explain interpolation by a factor I with a block diagram.Draw the spectral diagrams.