
AC No: 2/2022, 11th July 2022 Item No. – 6.60 (R)

University of Mumbai

O: Title of Course	M.E. (Electronics Engineering)
O: 5134 Eligibility	Passed B E/ B Tech (Electronics Engg.); B E/ B Tech (Electronics and Telecommunication Engg.); BE(Electrical and Electronics Engg); BE(Electronics and Computer Science)
R: Passing Marks	45%
No. of years/Semesters:	2 Years / 4 Semester
Level:	P.G. / U.G./ Diploma / Certificate
Pattern:	Yearly / Semester
Status:	New / Revised 2019 'C'
To be implemented from Academic Year:	With effect from Academic Year : 2022-23

HARD

Dr. R N Awale Chairman of Ad-hoc Board of Studies in Electronics Engineering

Dr. Suresh K. Ukarande Associate Dean, Faculty of Science and Technology **Dr Anuradha Majumdar Dean**, Faculty of Science and Technology

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering)of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc. There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for M E (Electronics Engineering) course from the academic year 2022-23.

Signature:

R N Awale Chairman, Board of Studies

Signature:

Faculty of Dean

Incorporation and implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C ' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Signature:

Signature:

Chairman, Board of Studies

Faculty of Dean

Preface

Technical education in the country is undergoing a paradigm shift in current days. Think tank at national level are deliberating on the issues, which are of utmost importance and posed challenge to all the spheres of technical education. Eventually, impact of these developments was visible and as well adopted on bigger scale by almost all universities across the country. These are primarily an adoption of CBCS (Choice base Credit System) and OBE (Outcome based Education) with student centric and learning centric approach. Education sector in the country, as well, facing critical challenges, such as, the quality of graduates, employability, basic skills, ability to take challenges, work ability in the fields, adoption to the situation, leadership qualities, communication skills and ethical behaviour. On other hand, the aspirants for admission to engineering programs are on decline over the years. An overall admission status across the country is almost 50%; posing threat with more than half the vacancies in various colleges and make their survival difficult. In light of these, an All India Council for Technical Education (AICTE), the national regulator, took initiatives and enforced certain policies for betterment, in timely manner. Few of them are highlighted here, these are design of model curriculum for all prevailing streams, mandatory induction program for new entrants, introduction of skill based and inter/cross discipline courses, mandatory industry internships, creation of digital contents, mandate for use of ICT in teaching learning, virtual laboratory and so on.

To keep the pace with these developments in Technical education, it is mandatory for the Institutes & Universities to adopt these initiatives in phased manner, either partially or in to-to. Hence, the ongoing curriculum revision process has a crucial role to play. The BoS of Electronics Engineering under the faculty of Science & Technology, under the gamut of Mumbai University has initiated a step towards adoption of these initiatives. We, the members of Electronics Engineering Board of Studies of Mumbai University feel privileged to present the revised version of M E (Electronics Engineering) curriculum to be implemented from academic year 2022-23. Some of the highlights of the revision are;

- i. Curriculum has been framed with reduced credits and weekly contact hours, thereby providing free slots to the students to brain storm, debate, explore and apply the engineering principles. The leisure provided through this revision shall favour to inculcate innovation and research attitude amongst the students.
- ii. New skill based courses have been incorporated in curriculum keeping in view AICTE model curriculum.
- iii. Skill based Lab courses have been introduced, which shall change the thought process and enhance the programming skills and logical thinking of the students
- iv. Mini-project with assigned credits shall provide an opportunity to work in a group, balancing the group dynamics, develop leadership qualities, facilitate decision making and enhance problem solving ability with focus towards socio-economic development of the country. In addition, it shall be direct application of theoretical knowledge in practice, thereby, nurture learners to become industry ready and enlighten students for Research, Innovation and Entrepreneurship thereby to nurture start-up ecosystem with better means.
- v. An usage of ICT through NPTEL/SWAYAM and other Digital initiatives of Govt. of India shall be encouraged, facilitating the students for self-learning and achieve the Graduate Attribute (GA) specified by National Board of accreditation (NBA).

Thus, this revision of curriculum aimed at creating deep impact on the teaching learning methodology to be adopted by affiliated Institutes, thereby nurturing the student fraternity in multifaceted directions and create competent technical manpower with legitimate skills. In times to come, these graduates shall shoulder the responsibilities of proliferation of future technologies and support in a big way for 'Make in India' initiative, a reality. In the process, BoS, Electronics Engineering got whole hearted support from all stakeholders including faculty, Heads of department of affiliating institutes, experts faculty who detailed out the course contents, alumni, industry experts and university official providing all procedural support time to time. We put on record their involvement and sincerely thank one and all for contribution and support extended for this noble cause.

Sr. No.	Name	Designation	Sr. No.	Name	Designation
1	Dr. R. N. Awale	Chairman	5	Dr. Rajani Mangala	Member
2	Dr. Jyothi Digge	Member	6	Dr. Vikas Gupta	Member
3	Dr. V. A. Vyawahare	Member	7	Dr. D. J. Pete	Member
4	Dr. Srija Unnikrishnan	Member	8	Dr. Vivek Agarwal	Member

Boards of Studies in Electronics Engineering

Program Structure for ME Electronics Engineering UNIVERSITY OF MUMBAI

(With Effect from 2022-2023)

Semester -	Ι
------------	---

Course Code	Course Name		eaching Scho Contact Hou		Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXC1011	Advanced Digital Communication	03			03			03
ELXC1012	Advanced VLSI Design	03			03			03
ELXC1013	Power Electronics System Design	03			03			03
ELXDLO101X	Department Level Optional Course-I	03			03			03
ILO101X	Institute Level Optional Course-I	03			03			03
ELXL1011	Laboratory-I Power Electronics System Design		02			01		01
ELXL1012	Laboratory-II Advanced VLSI Design		02			01		01
T	OTAL	15	04		15	02		17

				EXA	EMESTI	MESTER I			
		THEORY				MAXIMUM MARKS			
Course Code	Course Name	ΙΑ		ESE (Marks)	Exam Duration (Hours)				
		Test I	Test II	Avg.			Term Work	Practical / Oral	Total
ELXC1011	Advanced Digital Communication	20	20	20	80	03			100
ELXC1012	Advanced VLSI Design	20	20	20	80	03			100
ELXC1013	Power Electronics System Design	20	20	20	80	03			100
ELXDLO101X	Department Level Optional Course-I	20	20	20	80	03			100
ILO101X	Institute Level Optional Course-I	20	20	20	80	03			100
ELXL1011	Laboratory-I Power Electronics System Design						25	25	50
ELXL1012	Laboratory-II Advanced VLSI Design						25	25	50
TC	DTAL	100	100	100	400		50	50	600

Course Code	Department Level Optional Course-I (ELXDLO101X)
ELXDLO1011	Advanced Processor Architecture-I
ELXDLO1012	Next Generation Artificial Intelligence and Machine Learning
ELXDLO1013	Microelectronics Devices
ELXDLO1014	Advanced Digital Image Processing

Course Code	Institute Level Optional Course-I (ILO101X)
ILO1011	Product Life cycle Management
ILO1012	Reliability Engineering
ILO1013	Management Information System
ILO1014	Design of Experiments
ILO1015	Operation Research
ILO1016	Cyber Security and Laws
ILO1017	Disaster Management and Mitigation Measures
ILO1018	Energy Audit and Management

		Te	aching Sch	eme	Credits Assigned				
Course Code	Course Name	PracticalTheoryandOral		Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
ELXC1011	Advanced Digital Communication	03			03			03	

ſ	Subject Code			Examination Scheme								
		Subject Name			Theory	Marks						
		Subject Name	Internal assessment			End			Practical and Oral	Total		
			Test 1	Test 2	Avg	Sem. Exam	duration Hours	Work				
	ELXC1011	Advanced Digital Communication	20	20	20	80	3			100		

Course Pre-requisites:-

Digital Communication Course

Course Objectives:-

- 1. To understand the concepts of random processes in communication systems.
- 2. To comprehend the error correcting codes and fundamental limits of their performance
- 3. To analyze different equalization techniques for channels with ISI and AWGN
- 4. To understand signal diversity and explore MIMO systems
- 5. To study multichannel and multicarrier systems

Course Outcomes:-

- 1. Ability to understand the nature of random processes and its statistical characteristics.
- 2. Ability to appreciate the importance of error correcting codes-Turbo and LDPC
- 3. Ability to analyze various equalizers and their use in communication systems.
- 4. Ability to identify the drawbacks of multipath systems and methods to overcome them.
- 5. Ability to understand and analyze multichannel and multicarrier systems.

Module	Unit	Contents	Hrs.
No.	No.	Derfors of Devidence Devices	0(
1	11	Review of Random Processes	06
	1.1	Definition of random process	
	1.2	Specifying random process, Examples of discrete time and continuous time	
	1.0	random processes	
•	1.3	Stationary random process .Time Averages of random processes	
2	0.1	Error Control Coding	08
	2.1	Concept of Convolutional codes and its representation, transfer function,	
		Convolutional Interleaving, Decoding of Convolutional codes (Viterbi	
		decoding), and their performance in communication systems.	
	2.2	Turbo codes:-concepts, log-likelihood algebra, product code.	
	2.3	Low-density Parity-check codes:-construction, minimum distance of LDPC codes	
3		Signaling over Band limited channel	08
	3.1	Optimum receiver for channels with ISI and AWGN, Optimum maximum	
		likelihood receiver, discrete time model for a channel with ISI.	
	3.2	Linear Equalization: Peak distortion criteria, mean square error criterion,	
		Performance characteristics of MSE equalizer. Decision feedback	
		equalization: Co-efficient optimization, performance characteristics of	
		Decision feedback equalizer.	
4		Adaptive Equalizer	05
	4.1	Adaptive linear Equalizer:-Zero forcing algorithm, LMS algorithm,	
		convergence properties of LMS algorithm.	
	4.2	Self recovering (Blind) equalization based on maximum likelihood	
		criterion.	
5		Signalling over fading channels	12
	5.1	Channel model for Time variant multipath channels, classification of	
		multipath channels, Signal design for fading multipath channels.	
		Performance Improvement through signal diversity, Rake receiver and	
		multipath diversity, recombining techniques	
	5.2	MIMO systems- Basic considerations, Channel Models for Multiple	
		antenna system, signal transmission through slow fading frequency	
		nonselective and frequency selective MIMO Channels.	
	5.3	Multiple access techniques: TDMA, FDMA, CDMA, Multichannel	
		Digital Communication in AWGN Channels., OFDM modulation and	
		demodulation in an OFDM system, Spectral Characteristics of	
		Multicarrier signals, Bit and Power allocation in Multicarrier	
		modulation, Peak to Average ratio in multicarrier modulation.	
		Total	39
	i		

Text Books:

- 1. Simon Haykin, "Digital Communication Systems", Wiley 2014
- 2. Bernard Sklar, "Digital Communications: Fundamentals & Applications", Pearson Education 2nd Ed.

Reference Books:

- 1. John Proakis & Masoud Salehi , "Digital Communication", McGraw-Hill Education, 5th Ed
- 2. Simon Haykin "Adaptive Filter Theory", Prentice Hall Publication 4th Ed.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course	Teachir	ng Scheme	(Hours)	Credits Assigned			
Code	Name Theory		Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXC1012	Advanced VLSI Design	03			03			03

		Examination Scheme									
			Th	neory Ma	rks						
Course Course		Interr	nal Ass	sessment	End Sem	Term					
Code	Name	Test 1	Test 2	Avg	End Sem Exam	Work	Practical	Oral	Total		
ELXC1012	Advanced VLSI Design	20	20	20	80				100		

Course Pre-requisites:-

- 1. VLSI Design
- 2. IC Technology
- 3. Analog and Mixed Signal VLSI Design

Course Objectives:-

- 1. To make students understand & appreciate analytical approach for design of analog VLSI Design
- 2. To make students ready for design of coexistence of analog and digital circuit and the system level issues

Course Outcomes:-

- 1. Tackle with the system level issues for mixed VLSI design
- 2. Explain working of certain basic analog building blocks
- 3. Design different data converters
- 4. Implement and comment on performance of Memory devices.
- 5. State the significance of PLL in mixed VLSI design.

Module No.	Topics	Hrs.
	Analog and discrete-time signal processing	03
01	Mixed-Signal Layout Issues, <i>Floor-planning</i> , <i>Power Supply and Grounding</i> Issues, Guard Rings	
	Analog integrated continuous-time and discrete-time filters	08
02	MOSFETs as switches, Speed considerations, Precision Considerations, Charge injection cancellation, Unity gain buffer, Non-inverting amplifier and integrator, Analog multipliers, Loop Filters, Switched Capacitor filter	
	Special-purpose CMOS circuits.	08
03	Schmitt trigger, Multi-vibrator Circuits, Ring oscillators, VCO, Voltage Generators	
	Data Converters	08
04	Basics of Analog to digital converters (ADC) Basics of Digital to analog converters (DAC) DACs Successive approximation ADCs Dual slope ADCs High-speed ADCs (e.g. flash ADC, pipeline ADC and related architectures) High-resolution ADCs (e.g. delta-sigma converters)	
	Memory	06
05	ROM, EPROM, F-N model, RAM Memory structure Array Design, sensing and operation of memory cell.	
	Phase Lock Loop	06
06	Mixed-Signal layout Interconnects Phase locked loops Delay locked loops. Simple PLL, Charge pump PLL, Non ideal effects in PLL, Delay locked loops and applications of PLL in integrated circuits	
	TOTAL	39

Reference Books:-

- 1. CMOS mixed-signal circuit design by R. Jacob Baker, Wiley India, IEEE press, reprint 2008.
- 2. Design of analog CMOS integrated circuits by Behzad Razavi, McGraw-Hill, 2003.
- 3. CMOS circuit design, layout and simulation by R. Jacob Baker, Revised second edition, IEEE press, 2008.
- 4. CMOS Integrated ADCs and DACs by Rudy V. dePlassche, Springer, Indian edition, 2005.
- 5. Electronic Filter Design Handbook by Arthur B. Williams, McGraw-Hill, 1981.
- 6. Design of analog filters by R. Schauman, Prentice-Hall 1990 (or newer additions)
- 7. An introduction to mixed-signal IC test and measurement by M. Burns et al., Oxford university press, first Indian edition, 2008.

Research Publication:-

- Lanny L. Lewyn, Trond Ytterda, Carsten Wulff, and Kenneth Martin, "Analog circuit Design in Nanoscale Technologies", Proceedings of the IEEE Vol.97, No.10, October 2009
- 2. Chi-Sheng Lin, Bin-Da Liu, "A new successive approximation architecture for low-power low-cost CMOS A/D converter," IEEE Journal of Solid State Circuits, Vol.30, Issue. 1, Pages: 54-62, 2003.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

		Те	aching Sch	eme	Credits Assigned				
Course Code	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
	Power								
ELXC1013	Electronics System Design	03			03			03	

	Subject	Examination Scheme									
Subject Code				Theory							
	Name	Internal assessment			End	Exam	Term	Practical	Total		
		Test 1	Test 2	Avg	Sem. Exam	duration Hours	Work	and Oral			
ELXC1013	Power Electronics System Design	20	20	20	80	3			100		

Course Objectives:

- 1. To make the students understand and appreciate the analytical approach for design of power electronic systems.
- 2. To make the students ready for research & development oriented jobs in academia and industry by introducing recent research advancements in power electronic converters and their applications in distributed generation and smart grids.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. **Understand** power semiconductor device structures for adjustable speed motor control applications.
- 2. **Apply** the concepts of mathematical modelling and computer simulations to power electronic systems.
- 3. **Design** the new topologies of DC-AC inverters like multi-level and 4-leg inverters.
- 4. **Interpret** various issues involved in the parallel operation of inverters as a part of distributed generation system.
- 5. Select appropriate three phase AC voltage controllers depending on the application.
- 6. **Analyze** vital role played by power electronic converters in distributed generation and smart grids.

Note: The action verbs according to Bloom's taxonomy are highlighted in bold.

Module	Unit No.	Contents	Hrs.
<u>No.</u>	INU.	Analysis of Power Devices	05
1	1.1	Power MOSFET, SCR, IGBT, selection criteria for switching devices	02
	1.2	EMI-EMC issues, protection circuits: Anti saturation protection for	
	1.2	IGBT and power MOSFET, overload protection, thermal protection.	
2		Simulation of Power Electronic Converters and Systems	6
	2.1	Introduction to circuit oriented simulators like SPICE, MATLAB,	-
		SCILAB, comparison of these simulators	
	2.2	Study of transformations from 3-phase to stationary reference frame	
		(Clarke transform) and rotating reference frame, decoupled closed-loop	
		control strategies for converters based on these transformations.	
3		Modelling and Control of Power Electronic Systems	08
	3.1	Concept of zero-order hold (ZOH), first-order hold (FOH) and second-	
		order hold (SOH) elements, energy factor, models of AC-DC, DC-AC,	
		AC-AC and DC-DC converters as simple ZOH, FOH and SOH	
	3.2	PI control for AC-DC converters, PI control for DC-AC converters and	
		AC-AC (AC-DC-AC) converters, PID control for DC-DC converters,	
		closed-loop stability analysis.	
4		Inverters (DC-AC Converters)	10
	4.1	Multilevel inverters topologies and switching, introduction to 4-leg	
		inverters (basic working without SVM techniques)	
	4.2	Study of inverter topologies: online, line-interactive, stand-by, methods	
		of parallel operation of inverters: droop, and master & slave control.	
5	5.1	Three phase AC Voltage Controllers	4
		Three-phase full wave controller with R, RL-load, Input power factor,	
		static switches.	
6		Grid Interface of Renewable Energy Sources	6
	6.1	Inverter interfacing control strategies for transferring wind and solar	
		energy to grid, synchronization with grid using phase-locked loop	
	6.2	Concept of distributed generation systems, micro grids, smart grids.	
		Total	39

Text Books:

- 1. Mohan, T. M. Undeland, W. P. Robbins, Power Electronics: Converters Application and Design, John Wiley & Sons, USA, 2003.
- 2. M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, Pearson Education India, 2009.
- 3. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer USA, 2001.
- 4. F. L. Luo, H. Ye, M. H. Rashid, Digital Power Electronics and Applications, Elsevier Academic Press, USA, 2005.
- 5. H. Akagi, E. H. Watanabe, M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press/John Wiley & Sons Ltd., USA, 2007.
- 6. B. K. Bose, Modern power electronics and AC drives, Prentice Hall PTR, 2002.

Reference Books/ Research papers:

- 1. Q.-C. Zhong, T. Hornik, Control of Power Inverters in Renewable Energy And Smart Grid Integration, IEEE Press/John Wiley & Sons, Ltd., USA, 2013.
- J.-S. Lai and F. Z. Peng, Multilevel converters A new breed of power converters, IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 509-517, May/Jun 1996. URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=502161&isnumber=10824
- 3. T. Kawabata and S. Higashino, Parallel operation of voltage source inverters, IEEE Transactions on Industry Applications, vol. 24, no. 2, pp. 281–287, 1988. URL: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=2868&url=http%3A%2F%2Fieeex plore.ieee.org%2Fiel1%2F28%2F164%2F00002868
- 4. W. C. Lee, T. K. Lee, S. H. Lee, K. H. Kim, D. S. Hyun, and I. Y. Suh, A master and slave control strategy for parallel operation of three-phase UPS systems with different ratings, Proceedings of the 19th Annual IEEE Applied Power Electronics Conference & Exposition, (Anaheim, California, USA), pp. 456–462, Feb. 2004. URL: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1295848&url=http%3A%2F%2Fie eexplore.ieee.org%2Fiel5%2F9082%2F28818%2F01295848.pdf%3Farnumber%3D12958 48

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub Questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teachi	ing Scheme	(Hours)	Credits Assigned				
Course Coue	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXDLO1011	Advanced Processor Architectures-I	03			03			03	

	Course Name	Examination Scheme									
Course Code Course Name			The	ory Marks							
		Internal Assessment			End	Term	Practical	01	Total		
		Test	Test	Avorago	Sem	Work	Tacucai	Oral	Totai		
		1	2	Average	Exam						
	Advanced										
ELXDLO1011	Processor	20	20	20	80				100		
	Architectures-I										

Course Pre-requisites:-

1. Computer Organization

Course Objectives:-

- 1. To outline the various factors that contributes to processor performance.
- 2. To understand the hardware & software enhancements that lead to improved computing experience.
- 3. To elaborate on the importance of parallelism in processor systems.
- 4. To analyze issues that present constraints to increasing processor power.

Course Outcomes:-

- 1. Explain the protection mechanism employed in advanced processors.
- 2. Describe various enhancements in advanced processor architectures leading to high performance
- 3. Analyze the complexities in pipeline design
- 4. Describe issues dealing with parallelism in computing systems.

Module	Unit	Topics	Hr
No.	No.		S
		Performance Metrics	03
	1.1	Processor performance equation	
1	1.2	Energy and power within a microprocessor and power-reduction techniques	
	1.3	Designing for increasing performance of a Computer	
		X86 Protection Mechanism	08
	2.1	Protected mode register set	
	2.2	Segmentation in protected mode, Segment Descriptors	
2	2.3	Virtual memory management, Address Translation	
	2.4	Privilege levels, Protection rules, Descriptors	
	2.5	Multi-tasking and task switching mechanisms	
		Architectural Enhancements	08
	3.1	CISC and RISC processors	
	3.2	Pipelined processors	
3	3.3	Superscalar Architectures	
	3.4	Out-of-Order Execution	
	3.5	VLIW processors	
		Case Study on the Pentium processor	08
	4.1	Architecture	
4	4.2	Register Organization	
	4.3	Instruction pairing, Split-line access mechanism	
	4.4	Branch Prediction logic	
	4.5	On-chip cache organizations, Write-Once policy, Cache coherence	
		Pipelining concepts	06
	5.1	Pipeline performance	
5	5.2	Arithmetic pipelines	
	5.3	Hazards, Detection logic and minimization techniques	
	5.4	Dynamic Instruction scheduling	
		Parallelism	00
	6.1	Amdahl's law	
	6.2	Instruction-level parallelism (ILP), Thread-level parallelism (TLP)	1
6	6.3	Symmetric multi-processors(SMP),Multi-threading	1
	6.4	Multi-processor Organizations, Multi-core processors (CMP)	
	6.5	Clusters, Non-Uniform memory access (NUMA), Graphic processing	1
		units(GPU)	
		TOTAL	39

Reference Books:-

1. J.L. Hennessy, and D.A. Patterson, Computer Architecture: A quantitative approach, Fifth Edition, Morgan Kaufman Publication, 2012.

2. Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall International Editions.

3. William Stallings, Computer Organization and Architecture: Designing for Performance, Eighth Edition, Pearson Publications.

4. Don Anderson, Tom Shanley, Pentium Processor System Architecture, Second Edition, Mind shareInc.

5. M.R. Bhujade, Parallel Computing, Second Edition, New-Age International.

6. Daniel Tabak, Advanced Microprocessors, Second Edition, McGraw-Hill Publications.

Research Publications:-

1. M.D. Hill, Michael Marty, "Amdahl's Law in the Multi-core era", Computer, Volume 41, Issue 7, 2008, ISSN :0018-9162, Pgs.33-38.

2. J.L. Hennessy, "VLSI Processor Architecture", IEEE Transactions on Computers, Volume C-33, <u>Issue:12</u>Pgs. 1221-1246.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

1. Question paper will comprise of 6 questions, each of 20marks.

2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5marks will be asked.

4. Remaining questions will be selected from all the modules.

		Те	aching Sch	eme	Credits Assigned				
Course Code	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
ELXDLO1012	Next Generation Artificial Intelligence and Machine Learning	03			03			03	

		Examination Scheme										
Subject Code				Theory N		Practical						
	Subject Name	Internal assessment					_	Term				
	Nanc	Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Work	and Oral	Total			
ELXDLO1012	Next Generation Artificial Intelligence and Machine Learning	20	20	20	80	3			100			

Course Learning Objectives: This course will enable students to:

- 1. Demonstrate the fundamentals of Intelligent Agents
- 2. Illustrate the reasoning on Uncertain Knowledge
- 3. Explore the explanation-based learning in solving AI problems
- 4. Demonstrate the fundamentals of GDT
- 5. Illustrate the use of KNN
- 6. Analyze Recommender System

Course Outcomes: The student will be able to:

- 1. Demonstrate the fundamentals of Intelligent Agents
- 2. Illustrate the reasoning on Uncertain Knowledge
- 3. Explore the explanation-based learning in solving AI problems
- 4. Apply effectively ML algorithms to solve real world problems.
- 5. Apply Instant based techniques and derive effectively learning rules to real world problems

Module	Unit	Contents	Hrs.
<u>No.</u>	No.	Tratellizent Agenta	08
1	1.1	Intelligent Agents	08
		Agents and Environments, Good Behaviour: The Concept of Rationality The Nature of Environments	_
	1.2		_
	1.3	The Structure of Agents	_
2		T1: Chapter 2, Chapter 5 (2.1 to 2.4, 5.1 to 5.6)	00
2	0.1	Uncertain knowledge and Reasoning	08
	2.1	Quantifying Uncertainty, Acting under Uncertainty	_
	2.2	Basic Probability Notation, Inference Using Full Joint Distributions	_
	2.3	Independence, Bayes'Rule and Its Use the WumpusWorld Revisited	
		T1: Chapter 13	
3		Perception	07
	3.1	Image Formation, Early Image-Processing Operation	_
	3.2	Object Recognition by Appearance, Reconstructing the 3DWorld.	
	3.3	Object Recognition from Structural Information, Using Vision	
		T1: Chapter 24	
4		Advanced Machine Learning	08
	4.1	Overview, Gradient Descent algorithm, Scikit-learn library for ML,	
		Advanced Regression models, Advanced ML algorithms, KNN,	
		ensemble methods.	
	4.2	Forecasting: Overview, components, moving average,	
		decomposing time series, auto- regressive Models.	
	4.3	CLUSTERING: Types of clustering, Partitioning methods of clustering	
		(k-means, k-medoids), hierarchical methods	
		T2: Chapter 6 (up to 6.5.4), T3: Chapter 13	
5		Recommender System:	08
	5.1	Datasets, Association rules, Collaborative filtering, User-based	
		similarity, item-based similarity, using surprise library, Matrix	
		factorization	
	5.2	Text Analytics: Overview, Sentiment Classification, Naïve Bayes model	
		for sentiment classification, using TF-IDF vectorizer, Challenges of text	
		analytics	
		T2: Chapter 9 and 10	
		Total	39

Text Books:

- 1. Artificial Intelligence, A Modern Approach, Stuart J. Russell and Peter Norvig, Third Edition, Pearson, 2010
- 2. Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.
- 3. Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 2013
- 4. Machine Learning using Python, Manaranjan Pradhan, U Dinesh Kumar, Wiley 2019 T3.
- 5. Machine Learning, Anuradha Srinivasaraghavan, Vincy Joeph, Wiley 2019

Reference Books:

- 1. An Introduction to Multi Agent Systems, Michael Wooldridge, Second Edition, John Wiley & Sons
- Ethem Alpaydin, Introduction to Machine Learning, PHI Learning Pvt. Ltd, 2nd Ed., 2013
- 3. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, Springer, 1st edition, 2001
- 4. Machine Learning, Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson,2020

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Nome	Teachir	ng Scheme	(Hours)	Credits Assigned			
Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXDLO1013	Microelectronics Devices	03			03			03

					Examinatio	on Scheme					
			The	ory Marl	KS						
Course Code	Course Name	Internal Assessment			Fnd			ĺ			
Course Coue		Test 1	Test 2	Average	End Sem Exam	Term Work	Practical	Oral	Total		
ELXDLO1013	Microelectronics Devices	20	20	20	80				100		

Course Pre-requisites:-

• Electronic devices: Operation and Characteristics

Course Objectives:-

- To learn & apply basic concepts of semiconductor physics relevant to electronic devices
- To analyze & explain operation of semiconductor devices in terms of their physical structure
- To estimate various device parameters & their measurement
- To describe & use the device & circuit models of semiconductor devices of varying level of complexity

Course Outcomes:-

- Ability to apply & explain basic semiconductor concepts applicable to the devices
- Ability to describe the underlying physics & principles of operation of various devices
- Ability to create & apply linear incremental equivalent circuit models for BJT & MOSFET
- Ability to determine parameter values for large signal & incremental linear equivalent circuit models for the p-n diodes, BJT & MOSFET based on knowledge of device structure, dimensions & bias conditions

Module No.	Unit No.	Topics	Hrs.
	Basic	Semiconductor Physics	
	1.1	Review of quantum mechanics,	
1	1.2	Electrons in periodic lattices, Ek diagrams, Quasi-particles in semiconductors, electrons, holes and phonons	08
	1.3	Boltzmann transport equation and solution in the presence of low electric and magnetic fields - mobility and diffusivity	
	Semi	conductor Junction	
2	2.1	p-n junction action, Abrupt junction, Linearly graded junction, Static IV Characteristics of p-n junction, Electrical breakdown in p-n junctions	08
	2.2	Dynamic behaviour of p-n junction diode	
	2.3	Majority carrier diodes	
	2.4	Schottky, homo- and hetero-junction band diagrams and I-V characteristics	
	Mode	eling Bipolar Device Phenomena	
3	3.1	Injection and Transport Model	0.5
3	3.2	Continuity Equation	05
	3.3	Transistor Models: Ebers - Moll and Gummel Poon Model	
	3.4	SPICE modeling, temperature and area effects	
	MOS	FET Modeling	
	4.1	Introduction, Inversion Layer,	
	4.2	Threshold Voltage	
4	4.3	Gradual Channel Approximation, MOS Transistor Current	08
-	4.4	Temperature, Short channel and Narrow Width Effect	00
	4.5	Characterization of MOS capacitors: HF and LF CVs	
	4.6	Models for Enhancement, Depletion Type MOSFET	
	Mode	eling of Hetero Junction Devices	
=	5.1	Band gap Engineering	06
5	5.2	Band gap Offset at abrupt Hetero-junction	06
	5.3	Modified current continuity equations	
	5.4	Hetero Junction bipolar transistors (HBTs), Si-Ge	
	Mont	e Carlo Particle Modeling of Semiconductor Devices	
6	6.1	The Monte Carlo method	04
	6.2	Application of Monte Carlo techniques to device modeling	
TOTAL	39		

Reference Books:-

- 1. M. S. Tyagi, "Introduction to Semiconductor Materials and Device", John Wiley & sons, 1991
- 2. Ben G. Streetman & S. K. Bannerjee, "Solid State Electronic Devices" 6th edition, Prentice Hall
- 3. Richard S. Muller & Theodore I. Kummins, "Device Electronics for Integrated Circuits", John Wiley & Sons, 2nd edition (1986)
- 4. A. S. Grove, "Physics & Technology for Semiconductor Devices", McGraw Hill, 3rd edition (2007)
- 5. Donald A. Neamen, "Semiconductor Devices & Physics", McGraw Hill, 3rd edition (2007)
- 6. M. H. Rashid, "SPICE for Circuits & Electronics", Prentice Hall (1995)
- 7. A. Vladimirescu, "The SPICE Book", John Wiley & Sons, New York (1994)

Research Publications:-

- 1. Christopher M. Snowden, "Semiconductor Device Modeling" Rep. Prog. Phys. Vol. 48, pp. 223-275
- C. Moglestue, 'Monte Carlo particle modeling of small semiconductor devices' Computer Methods in Applied Mechanics & Engineering Vol. 30 (1982) pp. 173-208; North – Holland Publishing

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

		Те	aching Sch	eme		Credits Assigned			
Course Code	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
	Advanced								
ELXDLO1014	Digital Image Processing	03			03			03	

					Exami	ination Sche	eme		
Subject Code	Subject			Theory I					
Subject Code	Name	Inter	Internal assessment			Exam	Term Work	Practical and Oral	Total
		Test 1	Test 2	Avg	Sem. Exam	duration Hours	WOIK		
ELXDLO1014	Advanced Digital Image Processing	20	20	20	80	3			100

Course Pre-requisite: Digital Image processing

Course Objectives:

- 1. To understand the image fundamentals and mathematical transforms necessary for image processing and to study the image enhancement techniques.
- 2. To understand the image segmentation and representation techniques.
- 3. To understand how image are analyzed to extract features of interest.
- 4. To introduce the concepts of image registration and image fusion.
- 5. To analyze the constraints in image processing when dealing with 3D data sets.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. **Understand** digital image processing fundamentals: hardware and software, digitization, enhancement and restoration, encoding, segmentation, feature detection.
- 2. **Explain** spatial domain and frequency domain techniques for digital image enhancement.
- 3. **Perform** segmentation and morphological operations.
- 4. **Conduct** independent study and analysis of feature extraction techniques.
- 5. Understand the concepts of image registration and image fusion.
- 6. **Analyze** the constraints in image processing when dealing with 3D data sets and to apply image processing algorithms in practical applications.

Note: The action verbs according to Bloom's taxonomy are highlighted in bold.

Module	Unit	Contents	Hrs.
No.	No.		
1		FUNDAMENTALS OF DIGITAL IMAGE PROCESSING	06
	1.1	Elements of visual perception, brightness, contrast, hue, saturation, mach	
		band effect, 2D image transforms-DFT, DCT, KLT, and SVD	
	1.2	Image enhancement in spatial and frequency domain, Review of	
		morphological image processing	
2		PRE-PROCESSING, SEGMENTATION AND MODELLING OF	06
		IMAGES	
	2.1	Pre-processing of images- Histogram equalization Stochastic	
		presentation of images- Stationary and Non-stationary models -	
		Gaussian- HMM - Edge and texture models	
	2.2	Edge detection, Thresholding, Region growing, Fuzzy clustering,	
		Watershed algorithm, Active contour methods, Texture feature based	
		segmentation, Model based segmentation, Atlas based segmentation,	
		Wavelet based Segmentation methods	
3		FEATURE EXTRACTION	08
	3.1	First and second order edge detection operators, Phase congruency,	
		Localized feature extraction-detecting image curvature, shape features	
		Hough transform, shape skeletonization, Boundary descriptors, Moments,	
		Texture descriptors- Autocorrelation, Co-occurrence features, Runlength	
		features, Fractal model based features, Gabor filter, Wavelet features	
4		REGISTRATION AND IMAGE FUSION	10
	4.1	Registration- Pre-processing, Feature selection-points, lines, regions and	
		templates Feature correspondence-Point pattern matching, Line matching,	
		region matching Template matching	
	4.2	Transformation functions-Similarity transformation and Affine	
		Transformation. Resampling-Nearest Neighbour and Cubic Splines Image	
		Fusion-Overview of image fusion, pixel fusion, Multiresolution based	
		fusion discrete wavelet transform, Curvelet transform. Region based fusion.	
5		3D IMAGE VISUALIZATION	09
	5.1	Sources of 3D Data sets, Slicing the Data set, Arbitrary section planes.	
	5.2	The use of color, Volumetric display, Stereo Viewing, Ray tracing,	
		Reflection, Surfaces, Multiply connected surfaces, Image processing in 3D,	
		Measurements on 3D images.	
		Total	39
	l	istai	57

Text Books:

- 1. John C.Russ, "The Image Processing Handbook", CRC Press, 2007.
- 2. Mark Nixon, Alberto Aguado, "Feature Extraction and Image Processing", Academic Press, 2008.
- 3. Ardeshir Goshtasby, "2D and 3D Image registration for Medical, Remote Sensing and Industrial Applications", John Wiley and Sons, 2005.

Reference Books:

1. Rafael C. Gonzalez, Richard E. Woods, , Digital Image Processing', Pearson, Education, Inc., Second Edition, 2004.

Anil K. Jain, Fundamentals of Digital Image Processing', Pearson Education, Inc., 2002.
 Rick S.Blum, Zheng Liu, "Multisensor image fusion and its Applications", Taylor & Francis, 2006.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject code	Subject Name	Tea	ching sche	eme		Credit a	ssigned	
	Product Lifecycle	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO1011	Management (abbreviated as PLM)	3	-	-	3	-	-	3

		Examination scheme									
Sub		Tl	neory (o	ut of 1	00)		Pract.	1			
Code	Subject Name	Internal Assessment			End sem	Term work	and Oral	Oral	Total		
		Test1	Test2	Avg.	Exam		orui				
ILO1011	Product Lifecycle Management	20	20	20	80	-	-	-	100		

Course Objectives	 To familiarize the students with the need, benefits and components of PLM To acquaint students with Product Data Management & PLM strategies To give insights into new product development program and guidelines for designing and developing a product To familiarize the students with Virtual Product Development
Course Outcomes	 Student will be able to Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation. Illustrate various approaches and techniques for designing and developing products. Apply product engineering guidelines/ thumb rules in designing products for moulding, machining, sheet metal working etc. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plan

Module	Contents	Hours
1	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	12
2	Product Design: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	09
3	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	06
4	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	06
5	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	06
6 Reference	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	06

Reference Books:

1. John Stark, —Product Lifecycle Management: Paradigm for 21st Century Product Realisation , Springer-Verlag, 2004. ISBN: 1852338105

- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, —Product Design for the environment-A life cycle approach||, Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, —Product Life Cycle Management∥, Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, —Product Lifecycle Management: Driving the next generation of lean thinking||, Tata McGraw Hill, 2006, ISBN: 0070636265

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Tea	ching sche	eme	Credit assigned				
	Reliability Engineering	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO1012	(abbreviated as RE)	3	-	-	3	-	-	3	

			Examination scheme								
		Т	heory (out of 1	00)		Pract.				
Sub Code	Subject Name	Internal Assessment End Term and		End Term and	and	Oral	Total				
		Test1	Test2	Avg.	sem Exam	work	Oral				
ILO1012	Reliability Engineering	20	20	20	80	-	-	-	100		

Course Objectives	 To familiarize the students with various aspects of probability theory To acquaint the students with reliability and its concepts To introduce the students to methods of estimating the system reliability of simple and complex systems To understand the various aspects of Maintainability, Availability and FMEA procedure
Course Outcomes	 Student will be able to 1. Understand and apply the concept of Probability to engineering problems 2. Apply various reliability concepts to calculate different reliability parameters 3. Estimate the system reliability of simple and complex systems 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Contents	Hours
1	 Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance. Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis. 	10
2	 Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve. Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions. Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis. 	10
3	System Reliability System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
4	Reliability Improvement Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis. System Reliability Analysis – Enumeration method, Cut-set method, Success Path method, Decomposition method.	10
5	Maintainability and Availability System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement. Availability – qualitative aspects.	05
6	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	115

Books Recommended:

Reference Books:

- 1. L.S. Srinath, —Reliability Engineering||, Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, —Reliability and Maintainability Engineering ||, Tata McGraw Hill.

- 3. B.S. Dhillion, C. Singh, —Engineering Reliability||, John Wiley & Sons, 1980.
- 4. P.D.T. Conor, Practical Reliability Engg. ||, John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, —Reliability in Engineering Design∥, John Wiley & Sons.
- 6. Murray R. Spiegel, Probability and Statistics ||, Tata McGraw-Hill Publishing Co. Ltd.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Tea	ching sche	eme	Credit assigned				
ILO1013	Management Information System (abbreviated as MIS)	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
		3	-	-	3	-	-	3	

Sub Code	Subject Name	Examination scheme								
		Theory (out of 100)					Pract.			
		Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
ILO1013	Management Information System	20	20	20	80	-	-	-	100	

Course Objectives	 The course is blend of Management and Technical field. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and 								
	 competitive advantage Identify the basic steps in systems development 								
	 Define and analyze various MIS management responsibilities, including planning, budgeting, project management, and personnel management Discuss critical ethical and social issues in information systems 								
	Student will be able to								
	1. Explain how information systems Transform Business								
Course	2. Identify the impact information systems have on an organization								
Outcomes	3. Describe IT infrastructure and its components and its current trends								
	4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making								
	5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses								

Module	Contents	Hours
1	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	7
2	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	9
3	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	6
4	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E- commerce – B2B B2C. Mobile commerce.	7
5	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
6	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	10

Books Recommended:

Reference Books:

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm (10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.
- 3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Design of Experiments	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO1014	(abbreviated as DoE)	3	-	-	3	-	-	3

		Examination scheme										
		Т	heory (c	out of 1	00)		Pract.	Oral				
Sub Code	Subject Name	Intern	al Asses	sment	End	Term	and		Total			
		Test1	Test2	Avg.	sem Exam	work	Oral					
ILO1014	Design of Experiments	20	20	20	80	-	-	-	100			

Course Objectives	 To understand the issues and principles of Design of Experiments (DOE). To list the guidelines for designing experiments. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization
Course Outcomes	 Student will be able to Plan data collection, to turn data into information and to make decisions that lead to appropriate action. Apply the methods taught to real life situations. Plan, analyze, and interpret the results of experiments

Module	Contents	Hours
1	Introduction: Strategy of Experimentation, Typical Applications of Experimental Design, Guidelines for Designing Experiments, Response Surface Methodology.	6
2	Fitting Regression Models: Linear Regression Models, Estimation of the Parameters in Linear Regression Models, Hypothesis Testing in Multiple Regression, Confidence Intervals in Multiple Regression, Prediction of new response observation, Regression model diagnostics, Testing for lack of fit.	8
3	Two-Level Factorial Designs: The 2^2 Design, The 2^3 Design, The General 2^k Design, A Single Replicate of the 2^k Design, The Addition of Center Points to the 2^k Design, Blocking in the 2^k Factorial Design, Split-Plot Designs.	7
4	Two-Level Fractional Factorial Designs: The One-Half Fraction of the 2 ^k Design, The One-Quarter Fraction of the 2 ^k Design, The General 2 ^{k-p} Fractional Factorial Design, Resolution III Designs, Resolution IV and V Designs, Fractional Factorial Split-Plot Designs.	7
5	Conducting Tests: Testing Logistics, Statistical aspects of conducting tests, Characteristics of good and bad data sets, Example experiments, Attribute Vs Variable data sets.	7
6	Taguchi Approach: Crossed Array Designs and Signal-to-Noise Ratios, Analysis Methods, Robust design examples.	4

Reference Books:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, —Taguchi Technique for Quality Engineering, McGraw Hill.
- 7. Madhav S Phadake, —Quality Engineering using Robust Design, Prentice Hall.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Subject Name Teaching scheme Credit assigned				ssigned		
H 01015	Operation Research (abbreviated as OR)	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO1015	(abbreviated as OK)	3	-	-	3	-	-	3

		Examination scheme									
		Т	heory (c	out of 1	00)		Pract.	Oral			
Sub Code	Subject Name	Intern	al Asses	sment	End	Term	and		Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
ILO1015	Operation Research	20	20	20	80	-	-	-	100		

Course Objectives	 Formulate a real-world problem as a mathematical programming model. Understand the mathematical tools that are needed to solve optimization problems. Use mathematical software to solve the proposed models.
Course Outcomes	 Student will be able to Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures

Module	Contents	Hours
1	Introduction to Operations Research : Introduction, Historical Background, Scope of Operations Research , Features of Operations Research, Phases of Operations Research, Types of Operations Research Models, Operations Research Methodology, Operations Research Techniques and Tools , Structure of the Mathematical Model, Limitations of Operations Research	2
2	Linear Programming : Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, <i>Simplex Method</i> Penalty Cost Method or Big M-method, Two Phase Method, Revised simplex method, <i>Duality</i> , Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	6
3	Transportation Problem : Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method. Assignment Problem : Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem, Travelling Salesman Problem	6
4	Integer Programming Problem : Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms.	
5	Queuing models : queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	
6	Simulation : Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation <i>Monte-Carlo Method</i> : Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	4
7	Dynamic programming . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo	
8	Games Theory . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	4
9	Inventory Models : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	4

Reference Books:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, Kedar Nath Ram Nath-Meerut.
- 5. Operations Research, Kanti Swarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned			
ILO1016	Cyber Security and Laws (abbreviated	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILUIUIO	as CSL)	3	-	-	3	-	-	3

		Examination scheme									
		т	heory (o	out of 1	00)		Pract.	Oral			
Sub Code	Subject Name	Intern	al Assess	sment	End	Term	and		Total		
		Test1	Test2	Avg.	sem Exam	work	Oral				
ILO1016	Cyber Security and Laws	20	20	20	80	-	-	-	100		

Course Objectives	 To understand and identify different types cyber crime and cyber law To recognized Indian IT Act 2008 and its latest amendments To learn various types of security standards compliances 							
Course Outcomes	 Student will be able to 1. Understand the concept of cyber crime and its effect on outside world 2. Interpret and apply IT law in various legal issues 3. Distinguish different aspects of cyber law 4. Apply Information Security Standards compliance during software design and development 							

Module	Contents	Hours
1	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
2	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	10
3	Tools and Methods Used in Cyberline: Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
4	The Concept of Cyberspace: E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	8
5	Indian IT Act.: Cyber Crime and Criminal Justice : Penalties, Adjudication and Appeals Under the IT Act, 2000,IT Act. 2008 and its Amendments	8
6	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

Reference Books:

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi

- 6. Kennetch J. Knapp, *Cyber Security &Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional: https://www.sans.org/reading room/whitepapers/compliance/compliance-primer-professionals- 33538

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ILO1017	Disaster Management and Mitigation	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Measures (abbreviated as DMMM)	3	-	-	3	-	-	3	

		Examination scheme								
Sub Code		Т	heory (c	out of 1	00)		Pract.			
	Subject Name	Intern	Internal Assessment			Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam	work	Oral			
ILO1017	Disaster Management and Mitigation Measures	20	20	20	80	-	-	-	100	

Course Objectives	 To understand the various types of disaster occurring around the world To identify extent and damaging capacity of a disaster To study and understand the means of losses and methods to overcome /minimize it. To understand role of individual and various organization during and after disaster To know warning systems, their implementation and based on this to initiate training to a laymen To understand application of GIS in the field of disaster management To understand the emergency government response structures before, during and after disaster
Course Outcomes	 Student will be able to Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly

Module	Contents	Hours
1	Introduction: Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
2	Natural Disaster and Manmade disasters: Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion . Manmade Disasters:	06
3	Disaster Management, Policy and Administration: Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters. disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
4	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
5	Financing R elief Measures: Ways to raise finance for relief expenditure, Role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	09
6	Preventive and Mitigation Measures: Pre-disaster, during disaster and post-disaster measures in some events in general, Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication. Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

Reference Books:

- 1. Disaster Management by Harsh K.Gupta, Universities Press Publications.
- 2. Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. Introduction to International Disaster Management by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ILO1018	Energy Audit and ILO1018 Management	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	(abbreviated as EAM)	3	-	-	3	-	-	3	

		Examination scheme								
Sub Code	Calt and Marrie	Т	heory (o	out of 1	00)	m	Pract.			
Sub Code	Subject Name	Internal Assessment			End	Term	and	Oral	Total	
		Test1	Test2	Avg.	sem Exam		Oral			
ILO1018	Energy Audit and Management	20	20	20	80	-	-	-	100	

Course Objectives	 To understand the importance of energy security for sustainable development and the fundamentals of energy conservation. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management To relate the data collected during performance evaluation of systems for identification of energy saving opportunities
	Student will be able to
Course Outcomes	 To identify and describe present state of energy security and its importance. To identify and describe the basic principles and methodologies adopted in energy audit of an utility. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Contents	Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy	4
	Sector Reforms, Energy Security, Energy Conservation and its	
	Importance, Energy Conservation Act-2001 and its Features. Basics of	
2	Energy and its various forms, Material and Energy balance	8
2	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy	0
	costs, Bench marking, Energy performance, Matching energy use to	
	requirement, Maximizing system efficiencies, Optimizing the input	
	energy requirements, Fuel and energy substitution. Elements of	
	monitoring& targeting; Energy audit Instruments; Data and information-	
	analysis. Financial analysis techniques: Simple payback period, NPV,	
	Return on investment (ROI), Internal rate of return (IRR)	10
3	Energy Management and Energy Conservation in Electrical System:	10
	Electricity billing, Electrical load management and maximum demand	
	Control; Power factor improvement, Energy efficient equipment's and	
	appliances, star ratings. Energy efficiency measures in lighting system,	
	Lighting control: Occupancy sensors, daylight integration, and use of	
	intelligent controllers.	
	Energy conservation opportunities in: water pumps, industrial drives,	
	induction motors, motor retrofitting, soft starters, variable speed drives.	10
4	Energy Management and Energy Conservation in Thermal Systems:	10
	Review of different thermal loads; Energy conservation opportunities	
	in: Steam distribution system, Assessment of steam distribution losses,	
	Steam leakages, Steam trapping, Condensate and flash steam recovery	
	system.	
	General fuel economy measures in Boilers and furnaces, Waste heat	
	recovery use of insulation- types and application. HVAC system:	
	Coefficient of performance, Capacity, factors affecting Refrigeration and	
5	Air Conditioning system performance and savings opportunities	4
3	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive,	4
	pumps, HVAC system calculations; Lighting System: Installed Load	
	Efficacy Ratio (ILER) method, Financial Analysis.	
6	Energy conservation in Buildings: Energy Conservation Building	3
	Codes (ECBC): Green Building, LEED rating, Application of Non-	
	Conventional and Renewable Energy Sources	

Reference Books:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject Code	Subject Name	Teaching	Scheme		Credits Assigned				
Cout	Manie	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXL1011	Power Electronics System Design Lab		02			01		01	

Subject Code		Examination Scheme									
		Theory Marks									
	Subject Name	Internal assessme		essment		-	Term	Practical			
Coue	Manie	Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	. duration Work	Work	And Oral	Total		
ELXL1011	Power Electronics System Design Lab	-	-	-	-	-	25	25	50		

Term Work:

At least 10 experiments covering the entire syllabus of ELXC1013 (**Power Electronics System Design**) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiments must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exams will be based on the entire syllabus.

Laboratory Outcomes:

After successful completion of the course students will be able to:

- 1. Analyze selection criteria for power switching devices.
- 2. **Simulate** the power converters using simulation software like MATLAB, SCILAB and PSPICE.
- 3. **Design** and simulate closed loop control system for power converters.
- 4. **Simulate** a three phase power converters.
- 5. Understand the application of power electronics system.

Note: The action verbs according to Bloom's taxonomy are highlighted in bold.

Suggested List of Experiments

Sr. No.	Experiment Title
1	To study selection criteria for power switching devices.
2	To study PSPICE as circuit oriented simulators for power converters.
3	To study MATLAB as circuit oriented simulators for power converters.
4	To study SCILAB as circuit oriented simulators for power converters.
5	To study ZOH, FOH and SOH model of power converters.
6	To study PI and PID control of power converters.
7	To study three phase inverter with R, RL load.
8	To study multilevel inverter topologies.
9	To study three phase controlled rectifier with R/RL load.
10	To study grid interface of renewable energy sources.

Note: Experiments can be performed online using simulation software as well as hardware. Free simulation software SCILAB can be used to perform the experiments.

(Expected percentage of H/w and software experiments should be 60% & 40% respectively)

Note:

Suggested List of Experiments is indicative. However, flexibility lies with individual course instructors to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

SubjectSubjectCodeName	•	Teaching	Scheme		Credits Assigned				
	Tame	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXL1012	Advanced VLSI Design Lab		02			01		01	

	Subject Name	Examination Scheme									
				Theory N							
Subject Code		Internal assessment					Term	Practical			
Coue	Ivanie	Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Work	And Oral	Total		
ELXL1012	Advanced VLSI Design Lab	-	-	-	-	-	25	25	50		

Suggested List of Experiments (Any six):-

Students will have to perform at least one experiment on each module and submit certified journal having a minimum of 8 experiments.

Module No.	List of								
	Experiments								
1	apply and ground bounce determination								
2	Switch capacitor Filter								
2	Analog Multiplier								
2	Schmitt Trigger								
3	Ring oscillator								
4	ADC based on charge distribution								
4	Delta-sigma converters								
	ROM Implementation								
5	Sensing amplifier								
	Operation of Memory cell								
6	PLL Implementation								
6	DLL Implementation								

Program Structure for ME Electronics Engineering UNIVERSITY OF MUMBAI

(With Effect from 2022-2023)

	C N		Teaching S (Contact		Credits Assigned			
Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXC2021	Modern Industrial Internet Engineering	03			03			03
ELXC2022	Emerging Trends in SOC Design	03			03			03
ELXC2023	Advanced Digital Signal Processing	03			03			03
ELXDLO202X	Department Level Optional Course II	03			03			03
ILO202X	Institute Level Optional Course-II	03			03			03
ELXL2021	Laboratory-III Emerging Trends in SOC Design		02			01		01
ELXL2022	Laboratory-IV Advanced Digital Signal Processing (ADSP)		02			01		01
Т	OTAL	15	04		15	02		17

Semester - II

				EXA	EMESTER II				
				Т	HEORY				
		INTERNAL ASSESSMENT (IA)			End Semester	Exam	MAXIMUMMARKS		
Course Code	Course Name	Test I	Test II	Avg.	Examination (Marks)	Duration (Hours)	Term Work	Practical / Oral	Total
ELXC2021	Modern Industrial Internet Engineering	20	20	20	80	03			100
ELXC2022	Emerging Trends in SOC Design	20	20	20	80	03			100
ELXC2023	Advanced Digital Signal Processing	20	20	20	80	03			100
ELXDLO202X	Department Level Optional Course II	20	20	20	80	03			100
ILO202X	Institute Level Optional Course-II	20	20	20	80	03			100
ELXL2021	Laboratory-III Emerging Trends in SOC Design						25	25	50
ELXL2022	Laboratory-IV Advanced Digital Signal Processing (ADSP)						25	25	50
T	OTAL	100	100	100	400		50	50	600

Course Code	Department Level Optional Course-II (EXCDLO202X)
ELXDLO2021	Advanced Processor Architecture-II
ELXDLO2022	Cloud Computing
ELXDLO2023	Nanoelectronics
ELXDLO2024	Deep Learning and Computer Vision

Course Code	Institute Level Optional Course-II (ILO202X)
ILO2021	Project Management
ILO2022	Finance Management
ILO2023	Entrepreneurship Development and Management
ILO2024	Human Resource Management
ILO2025	Professional Ethics and CSR
ILO2026	Research Methodology
ILO2027	IPR and Patenting
ILO2028	Digital Business Management
ILO2029	Environmental Management

Carrier		Т	eaching Sche	eme	Credits Assigned				
Course Code	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
ELXC202 1	Modern Industrial Internet Engineering	03	-	-	03	-	-	03	

		Examination Scheme									
Subject		Theory Marks									
	Subject	Internal assessment				Exam	Torm		l		
Code	Name	Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	duratio n Hours		Practical and Oral	Total		
ELXC20 21	Modern Industrial Internet Engineerin g	20	20	20	80	03	-	-	100		

Pre-Requisites: Computer Networks, Web Technologies, Industrial Automation.

Course Objectives:

- 1. To understand the importance of the Internet in Industrial applications.
- 2. To understand various protocols used in modern industry for communication.
- 3. To learn Internet of Things
- 4. To analyse IoT functional stack

Course Outcomes:

At the end of this course the student will be able to:

- 1. Understand the importance of the Internet in Industrial applications.
- 2. Compare various communication protocols used in industry.
- 3. Analyse significance of Industry 4.0
- 4. Emphasize core IoT functional Stack and understand application protocols for IoT.
- 5. Define cloud computing and memorize the different cloud service and deployment models.
- 6. Understand security aspects of IoT

Module No.	Unit No.	Contents	Hrs.
1	1100	Internet Fundamentals and IP versions	03
	1.1	IPv4 ADDRESSES : Address Space , Classful and Classless addressing.	_
	1.2	IPv6 ADDRESSES: Structure, Address Space, Packet format, Advantages.	4
	1.3	TRANSITION FROM IPv4 TO IPv6	
2		Industrial Communication Protocols	06
	2.1	Web Communication Protocols for connected devices:- CoRE Environment, CoAP, M2M, MQTT, XMPP, HTTP, SOAP Protocols	-
	2.2	RS485/RS232 Communication Protocols, MODBUS protocol,	
3		Industry 4.0 and Internet of Things (IoT)	08
C	3.1	IoT Impact – Connected Roadways, Connected Factory, Smart	
	011	Connected Buildings, Smart Creatures	
	3.2	Convergence of IT and OT, IoT Challenges	1
	3.3	IoT Data Management and Compute Stack – Design considerations and	
		Data related problems, Fog Computing, Edge Computing, The Hierarchy	
		of Edge, Fog and Cloud	
4		The Core IoT Functional Stack	08
	4.1	Layer 1 – Things: Sensors and Actuators Layer	
	4.2	Layer 2 – Communications Network Layer, Access Network Sublayer,	
		Gateways and Backhaul Sublayer, Network Transport Sublayer, IoT	
		Network Management Sublayer	
	4.3	Layer 3 – Applications and Analytics Layer, Analytics Vs. Control	
		Applications, Data Vs. Network Analytics, Data Analytics Vs. Business	
		Benefits, Smart Services	
5		Cloud Computing	08
	5.1	Cloud Computing Paradigm for Data Collection, storage and computing	
	5.2	Cloud Service Models, Cloud Deployment Models, Cloud computing	
		architecture, Advantages and Disadvantages of Cloud Computing.	
		Securing IoT	06
	6.1	Security Priorities : Integrity, Availability and Confidentiality	1
6	6.2	Risk Analysis Structures : OCTAVE and FAIR	1
		Total	39

Text Books:

- 1. B.A. Forouzan, Data Communications and Networking, 4th edition, TMH
- 2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henry, "IoT Fundamentals Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1 st Edition, Published by Pearson Education, Inc, publishing as Cisco Press, 2017.
- 3. Barrie Sosinsky,"Cloud Computing Bible", Wiley Publication.

Reference Books:

- **1.** Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, by Daniel Minoli, Bernd Scholz-Reiter, Florian, Wiley Publication
- 2. Industrial IoT Challenges, Design Principles, Applications, and Security by Ismail Butun (Editor), Springer Publications.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on the entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course		Teaching Scheme			Credits Assigned				
Course Code	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total	
ELXC2022	Emerging Trends in SOC Design	03			03			03	

		Examination Scheme									
Subject Code				Theory Mar							
	Subject	Internal assessment					Term	Practical and			
	Name	Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duratio n Hours	Work	Oral	Total		
ELXC2022	Emerging Trends in SOC Design	20	20	20	80	3			100		

Course Objectives:

- 1. To develop the understanding of fundamental principles of System on Chip Design.
- 2. To disseminate the basic methods for FPGA, ASIC and NOC based design for SOC.
- 3. To develop the concept of Soft core and Multi-Core Processors.
- 4. To introduce the design of Processor ASIC and DDR memory controller.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Understand the fundamental concepts of SOC design.
- 2. Analyze various SOC designs based on ASIC, FPGA and NOC.
- 3. **Develop** the concepts of Soft core and Multi core Processors.
- 4. **Design** various System on Chip Designs using FPGA and ASIC.
- 5. Create SOC designs similar to Processor ASIC and DDR memory controller.

Note: The action verbs according to Bloom's taxonomy are highlighted in bold.

Module	Unit	Contents	Hrs.
No.	No.		
1		Introduction to SoC	06
	1.1	The Fundamentals trends of SoC, SoC Design Flow, Challenges in SoC Design	
	1.2	Introduction to Digital SoC Design:	
		Fundamentals of Processor Organizations, Memory Organizations and	
		Interconnect organizations,	-
	1.3	Introduction to Analog SoC Design:	
		System Architecture and Methods, Noise in Mixed Signal Circuits, Inter Symbol	
•		Interference	
2		FPGA Based System Design	06
	2.1	FPGA Based Systems Designs: Goals and Techniques, Hierarchical Design, Design Abstraction, Methodologies	
	2.2	FPGA Based Architecture: Introduction, Behaviour Design, Design	
		Methodologies	
	2.3	Large Scale FPGA Systems: Busses, Platform FPGAs, Multi-FPGA Systems, Novel Architectures	
3		ASIC Based System Design	08
	3.1	ASIC Design Constraints: Synchronous Design Flow, Positive and Negative	
		Clock and impact on speed. Timing Path Design	
	3.2	Multiple Clock Domain Design: Data Path Synchronizers	
	3.3	Architecture and Microarchitecture Design: Design Partitioning and Clock	
		Grouping	
4		Soft-core And Multicore Processors	10
	4.1	Soft-core Processors: Configurable Processors, Instruction Set issues	
	4.2	Stream Multicore Processors: Raw Architecture Overview, Raw chip	
		Implementation, Stream and ILP Computation	
5		NoC Based Design and IoT	07
	5.1	NoC with Switch interconnect: Static and Dynamic Networks	1
	5.2	Layered Architecture and Network Interface Unit: NoC Layered Architecture,	1
		NoC and NIU Example, Bus versus NoC	
	5.3	Evaluating Interconnect Networks: Static Versus Dynamic Networks,	
		Comparing Networks Examples	
6		SoC Case Studies	0.2
	6.1	Processor ASIC Implementation, DDR memory controller	02
	6.2	ALTERA ARRIA-10	
		Total	39

Text Books:

- 1. Michael J. Flynn, Wayne Luk," Computer System Design: System-On-Chip", Wiley; ISBN: 9781118009901, Edition: 1, June 2011.
- 2. Vibbhav Taraate, "ASIC Design and Synthesis-RTL Design Using Verilog", Springer, ISBN 978-981-33-4641-3.
- 3. Steve Kilts, "Advanced FPGA Design: Architecture, Implementation, and Optimization", 2nd Edition, 2000, Addison Wesley Professional.
- 4. Jari Nurmi, "Processor Design: System-On-Chip Computing for ASICs and FPGAs", Springer, 2007.
- 5. ALTERA,CYCLONE-V,TERASIC,DE1,XILINX-Zynq-7000,Microchip, polar Fire, Xilinx Virtex Ultrascale, Xilinx Kintex Ultrascale, ALTERA ARRIA-10,

Reference Books:

- 1. Wayne Wolf, "FPGA-Based System Design", Prentice Hall, Modern Semiconductor Design Series, ISBN 0131424610.
- 2. Xilinx Technical Reference Manual,"Zynq Ultra Scale + Device", UG 1085 (v2.2) December 4, 2020.
- 3. Ricardo Reis, "Design of System on a Chip: Devices and Components", 1st Edition, 2004, Springer
- 4. Jason Andrews, "Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology)", Newnes, BK and CDROM.
- 5. Prakash Rashinkar, Peter Paterson and Leena Singh L, "System on Chip Verification Methodologies and Techniques", 2001, Kluwer Academic Publishers.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teacl	ning Scheme	e (Hrs)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXC2023	Advanced Digital Signal Processing	3	-	-	3	-	-	3

Course Code	Course Name	Examination Scheme								
			The	eory Marks						
		Int	ernal as	sessment	End	Term	Practical	Oral	Total	
		Test 1	Test 2	Avg. Of Test 1 & Test 2	Sem. Exam	Work				
ELXC2023	Advanced Digital Signal Processing	20	20	20	80	-	-	-	100	

Course Pre-requisites:

Signals and Systems, Digital Signal Processing, Probability and Random processes.

Course Objectives:

- **1.** To understand DSP techniques in different fields of modern day applications.
- 2. To study multirate DSP algorithms and filter bank analysis for real world applications.
- **3**. To develop a solid foundation in linear prediction analysis and optimum filtering concepts.
- 4. To learn thoroughly LMS and RLS algorithms which are at the heart of the adaptive systems.
- 5. To gain deep insight into spectrum estimation algorithms.

Course Outcomes:

Students will be able to

- **1.** Apply multirate processing techniques in practical applications.
- 2. Design optimum filters suited for different applications.
- **3.** Design and simulate adaptive systems.
- **4.** Extract information from spectral analysis of signals.
- 5. Design and test signal processing algorithms for various tasks.

Module No.	Unit No	Topics	Hrs			
01	110	Introduction and Review	04			
	1.1	Basic DSP examples in block diagrams, Typical DSP in real world applications.	02			
	1.2	Review of FIR & IIR filters, Sampling and Reconstruction of signals, Analog to digital and Digital to analog conversions.	02			
02		Multirate Digital Signal Processing	12			
	2.1	Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D.	03			
	2.2	Implementation of sampling rate conversion, Multistage implementation of sampling rate conversion.	03			
-	2.3	Sampling rate conversion of band pass signal, sampling rate conversion by arbitrary factor, Applications of multirate signal processing.				
	2.4	Digital filter banks, Two channel Quadrature Mirror filter banks.	03			
03 3.1		Linear Prediction and Optimum filters	07			
	3.1	Random signals, Correlation functions, Power Spectra, Innovations representation of a Stationary random Process	03			
	3.2	Forward and Backward Linear predictions.	02			
	3.3	Solution of Normal equations. The Levinson-Durbin Algorithm.	02			
04		Adaptive Digital Filters	06			
	4.1	FIR adaptive filters. Steepest descent adaptive filter, LMS algorithms, Normalized LMS, Application in noise cancellation.	04			
	4.2	Adaptive Recursive filters.	02			
05		Power Spectrum Estimation	06			
	5.1	Estimation of spectra from finite duration observations of signals.	02			
	5.2	Nonparametric methods for power spectrum estimation.	02			
	5.3	Parametric methods for power spectrum estimation.	02			
06		Applications of DSP	04			
	6.1	Biomedical applications, ECG signal analysis, QRS template, QRS detection methods etc.	02			

6.2	Speech processing applications, Wideband and narrowband spectrograms.	02
	Total	39

Reference Books:

- 1. Digital Signal Processing Principles, algorithms and applications, John. G. Proakis , D.G.Manolakis. 4/e, Pearson.
- 2. Digital Signal Processing, A Practical approach. Emmanuel .C. Ifeachor B.W.Jervis. Pearson.
- 3. Digital Signal Processing. A computer based approach, S.K.Mitra, Tata Mc Graw Hill.
- 4. Statistical Digital Signal Processing, Monson. H .HAYES, Wiley India.
- 5. Introduction to Digital Speech Processing, L. R Rabiner & R.W Schafer, Pearson.
- 6. Discrete time Signals Processing, Oppenheim & Schaffer, Pearson.

Recommended Research Papers for Reading:

- 1. **P. Vaidyanathan** (1990). "Multirate Digital filters, Filter banks, Polyphase network and applications: A tutorial" Proc. IEEE vol 78, No 1, pp 56-90.
- 2. Schoeder M. R (1985) "Linear predictive coding of speech: Review and current directions" IEEE Commun. Mag vol 23, pp 54-61
- 3. **Widrow.B**(1975) "*Adaptive noise cancelling, Principles and Applications*" Proc IEEE, vol 63, pp 1692-1716
- 4. Widrow B(1976) "Stationary and Non stationary characteristics of the LMS adaptive filter" Proc IEEE, vol 64,pp 1151-1162
- 5. **Thomson D. J** (1969) "Spectral estimation & Harmonic analysis" Proc IEEE vol 70, pp 1055-1096

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Course Name	Teachi	ng Scheme ((Hours)	Credits Assigned			
Subject Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXDLO2021	Advanced System Architectures	03			03			03

Subject Code	Course Name	Examination Scheme								
		Theory Marks								
		Internal Assessment			End	Ter	r Practical	Oral	Total	
		Test 1	Test 2	Average	Sem Exam	m Wor k				
ELXDLO202 1	Advanced System Architectures	20	20	20	80				100	

Course Pre-requisites:-

1. Computer Organization & Processor Architectures

Course Objectives:-

- 1. To outline the various factors those contribute to system design
- 2. To understand the design flow of application specific processors
- 3. To elaborate on the importance of VLIWDSP processors & soft-core processors
- 4. To analyze issues & pitfalls in reconfigurable processor design with FPGA

Course Outcomes:-

- 1. Ability to explain various types of processors & their design flow in detail
- 2. Ability to describe various concepts of VLIWDSP processors & soft-core processors
- 3. Ability to analyze the issues in VLIWDSP processor design

Module No.	Unit No.	Topics	Hrs.
100	110.	Computer Architecture Fundamentals	
	1.1	A top Level View of Computer functions and Interconnections	-
1	1.2	Computer Components, Architecture organization	06
	1.3	Concepts and Ways of Parallelism	
	1.4	Domain-Specific Processors and Application Specific Processors	
	1.5	Design Considerations	
		Processor Design Flow	
	2.1	Capturing requirements, Instruction coding	
2	2.2	Exploration of Architecture Organizations	06
	2.3	Hardware and Software Development	
	2.4	Software tools and libraries	
		Memory	
	3.1	Semiconductor Memories SRAM, DRAM and organization	
3	3.2	Principles of Cache memory, Cache Design	06
	3.3	Cache Coherency, MESI Protocol	
	3.4	RAID	
		I/O, Peripherals and Operating System	
	4.1	Types of I/Os, I/O Interfacing concepts	
4	4.2	PCI, PCI-X, PCI-E	06
	4.3	Universal Serial Bus(USB)	
	4.4	Operating System Overview, Scheduling	
	4.5	Memory Management in Operating Systems	
		VLIW DSP Processor	
	5.1	DSP Processor Architecture, DSP-specific requirements	07
5	5.2	Micro architectural concepts	
	5.3	VLIW and SW programmability	
	5.4	Application specific adaptable core Architecture	
	5.5	Design space Exploration, Complexity of Configurability	
		Soft-Core Processors	
	6.1	Processor Customization	
6	6.2	Microprocessor cores in SOC design, Difference between Microprocessor and SOC	08
	6.3	Reconfigurable processors with FPGA	
	6.4	Case study of Reconfigurable structure	
	6.5	Pitfalls in VLIW Architectures	
		TOTAL	39

Reference Books:-

- 1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson Publications.
- 2. Jari Nurmi, "Processor Design: System-on-Chip Computing for ASICs and FPGAs", Springer.
- 3. Daniel Tabak, Advanced Microprocessors, Second Edition, McGraw-Hill Publications.
- 4. Hennessy JL, Patterson DA (2003) Computer Architecture: A Quantitative Approach.3rd edition. Elsevier Morgan Kaufmann, San Francisco

Research Publications:-

- Andrea Lodi, Mario Toma, "A VLIW Processor with a Reconfigurable Instruction Set for Embedded Applications", IEEE Journal Of Solid-State Circuits, Vol. 38, No. 11, November2003,pp-1876-1886.
- 2. Lodi A, Cappelli A, Bocchi M, Mucci C, "XiSystem: A XiRisc-based SoC with a Reconfigurable I/O Module", IEEE Journal of Solid-State Circuits (JSSC), 2006, Vol.41, No.1, pp-85–96.

Internal Assessment (IA):-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

- 1. Question paper will comprise of 6 questions, each of 20marks.
- 2. Total 4 questions need to be solved.
- 3. Q No.1 will be compulsory and based on entire syllabus with sub-questions of 2 to 5marks.
- 4. Remaining questions will be selected from all the modules.

Course Code		Те	eaching Sche	eme	Credits Assigned				
	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/ Practical and Oral	Tutorial	Total	
ELXDLO2022	Cloud Computing	03			03			03	

Course Code	Course Name	Examination Scheme								
				Theory N						
		Inter	nal asso	essment			Term	Practical		
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Work	and Oral	Total	
ELXDLO2022	Cloud Computing	20	20	20	80	3			100	

Course Objectives: Students will be able to learn

- 1. Basics of cloud computing.
- 2. Key concepts of virtualization
- 3. Different cloud computing services
- 4. Cloud implementation, Programming and Mobile cloud computing
- 5. Key components of Amazon Web Services
- 6. Cloud security and privacy

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Define cloud computing and memorize the different cloud service and deployment models.
- 2. Describe importance of virtualization along with their technologies.
- 3. Use and examine different cloud services.
- 4. Analyse the components of open stack and Google Cloud platform and understand Mobile Cloud computing.
- 5. Describe the key components of Amazon web service.
- 6. Understand cloud security and privacy.

Module	Unit No.	Contents	Hrs.
<u>No.</u>	110.	Introduction to the Cloud Computing	08
-	1.1	Defining Cloud Computing, Cloud and other similar configurations, Components of Cloud, Cloud types: NIST and Cloud Cube Models, Cloud Deployment Models and Service Models, Cloud computing architecture, Advantages and Disadvantages of Cloud Computing. Virtualization: Characteristics of virtualized environment, Understanding	
	1.2	the importance of Hypervisors, Type I & Type II Hypervisors, Taxonomy of virtualization, Implementation Levels of Virtualization, Virtualization and Cloud Computing, Pros and Cons of virtualization, Technology Examples: KVM, Xen, Vmware and HyperV	
2	2.1	Cloud Computing Services	04
		SPI Model of Cloud computing, Anything as a service or Everything as a Service (XaaS): Database as a Service,Storage as a Service, Security as a Service,Collaboration as a Service, Compliance as a service, Monitoring as a Service, Network as a Service, Disaster Recovery as a service, Identity management as a Service, Analytics as a Service and Backup as a Service.	
3	3.1	Amazon Web Service Cloud Platform	10
3	5.1	Anazon web service Cloud Platorni Introduction to the AWS Cloud, AWS coreservices by categories. Compute Service: Introduction to EC2, EC2 Instances, EC2 Amazon Machine Images, Instance Types, Instance Lifecycle. Storage Service: Introducing S3, working with Buckets, setting bucket security, S3 event and notification, bucket properties, working with Elastic Block Store Volumes, Object Storage Vs Block Storage, Archives versus backups, Introduction to Glacier. Virtual Private Cloud: Introduction, Subnet, Elastic Network Interfaces, Internet Gateways, Route Tables, Security Groups. CloudWatch:Introduction, CloudWatch Metrics, CloudWatch Alarms. Database as a Service: Introduction to Amazon Relational Database Service (RDS), Database Engines, Database Instance Classes, Backup and Recovery, Non-relational (No-SQL) Databases, Types ofNon-relational Databases, Introduction to DynamoDB, Features, Partition and Hash Keys.	10
4	4.1	Cloud Implementation, Programming and Mobile Cloud Computing Open Stack Cloud Architecture: Feature of Open stack, Components of Open stack, mode of operations. Programming support for Google apps engine-GFS, Bigtables, Chubby. Mobile Cloud Computing: Definition, architecture, benefits and	06
		challenges of mobile cloud computing	
5	5.1	Introduction to Azure app services	03

		REST essentials, .NET web API essentials, Comparison of AWS services with other cloud services like Azure, Google cloud platform	
	6.1	Cloud Security and Privacy	
		What is security, why is it required in cloud computing, Different types of security in cloud, attacks, and vulnerabilities, IaaS security, PaaS security, SaaS security, trust boundary, Audit and reporting. Introduction to Identity and access Management (IAM), IAM Challenges, IAM Definition, IAM Architecture and Practice, Relevant IAM Standards and Protocols for Cloud Services. Privacy: What Is Privacy? What Are the Key Privacy Concerns in the Cloud?, Legal and Regulatory Implications: Laws and Regulations, Governance, Risk, and Compliance (GRC).	08
6		Total	39

Text Books:

- 1. Barrie Sosinsky, "Cloud Computing Bible", Wiley Publication.
- 2. Kailash Jayaswal, Jagannath Kallalurchi, Donald J. Houde, Dr. Deven Shah, "Cloud Computing Black Book", Dreamtech Press.
- 3. Joe Baron et.al,"AWS certified solution Architect", Sybex publication
- 4. Cloud security: A comprehensive guide to secure cloud computing by ronold L Krutz and Russell Dean Vines, Wiley publication.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teachi	ng Scheme	(Hours)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXDLO2023	Nanoelectronics	03			03			03	

	Course Name	Examination Scheme									
			Theo	ory Marks							
Course Code		Inter	mal Ass	sessment	End	Term	Practical	l Oral	Total		
		Test	Test	Avorago	Sem	Work	rractical		Total		
		1	2	Average	Exam						
ELXDLO2023	Nanoelectronics	20	20	20	80				100		

Course Pre-requisites:-

1. MOSFET & Microelectronic Concepts

2. Quantum Mechanics

Course Objectives:-

1. To learn fundamental concepts of nanoelectronics including single electron effects & electron transport in nanoscopic system

2. To learn the concept of the quantum dot, the quantum wire, quantum well & nano applications of these structures

3. To gain knowledge on SET & carbon nano tubes in design of transistors

4. To learn basics of ballistics transport & spintronics

Course Outcomes:-

1. Ability to explain concepts of nanoelectronics including single electron effects & electron transport in nanoscopic system

2 Ability to describe concept of the quantum dot, the quantum wire, quantum well & nano applications of the sestructures

3. Ability to describe various new structures like CNTFET &SET

4. Ability to describe basic of spintronics & spin based devices

Module	Unit	Topics	Hrs.
No.	No.	Classical particles , classical waves and Quantum Particles	
	1.1	Introduction to Nanotechnology	_
1	1.1	Comparison of classical and Quantum System	08
T	1.2	Origins of Quantum Mechanics	
	1.4	Electron as particle , electron as wave	_
	1.5	Wave packets and uncertainty	
	1.0	Quantum Mechanics of Electron	
	2.1	General Postulates of Quantum Mechanics	-
	2.2	Time Independent Schrodinger 's equation	
2	2.3	Free electron: One dimensional and three dimensional space, Free electron Gas theory of metals	08
	2.5	Partially confined electron. Finite potential well: Finite potential rectangular well, Parabolic well, Triangular well	
	2.6	Quantum Dot, Wires and wells	
		Single Electron and few Electron Phenomena and devices	
	3.1	Tunneling junctions and application of tunneling	
	3.2	Coulomb Blockade and The single Electron Transistor	
3	3.3	Resonant Tunneling Diodes- principle and applications	08
	3.4	Carbon Nanotube Transistor(FETs and SETs), Semiconductor Nanowire FETs and SETs	
	3.5	Molecular SETs and Molecular Electronics	
		Model of Semiconductor Quantum Wells, Quantum Wires and Quantum Dots	
	4.1	Particles Statistics and density of states	
4	4.2	Semiconductor heterostructures and QuantumWell	07
	4.3	Quantum Wires and Nanowire	
	4.4	Fabrication Techniques for Nanostructures	
		Ballistic Transport , and Spin Transport	
	5.1	Ballistic Transport: Electron collision and length scale, Ballistic Transport Model ,Quantum Resistance and conductance	
5	5.1	Spin Vs charge, AMR, GMR, TMR, The transport of spin	08
	5.2	Spin devices- Spin valves, Magnetic tunnel junctions,	
	5.3	Applications – Memories (MRAM, STRAM), Logic device and Microwave Oscillators	
		TOTAL	39

Reference Books:-

- 1. George W. Hanson "Fundamental of Nanoelectronics", PEARSON
- 2. Rainer Waser, "Nano Electronics and Information Technology: Advanced Electronic Materials and Novel Devices", 2nd Edition, Wiley-VCH, 2012.
- 3. Chonles P. Poole Jr., Frank. J. Owens, "Introduction to Nanotechnology", John Wiley and Sons, 2009.
- 4. T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
- 5. Mark A. Ratner, Danill Ratner, "Nano Technology: A Gentle Introduction to the Next Big Idea", Prentice Hall, 2003
- 6. Springer Handbook of Nanotechnology ISBN:978-3-540-35172-6

Research Publications:-

- Leland Chang, Yang-Kyu Choi, Daewon Ha, Pushkar Ranade, Shiying Xiong, Jeffrey Bokor, "Extremely Scaled Silicon Nano-CMOS Devices", PROCEEDINGS OF THE IEEE, VOL. 91, NO. 11, NOVEMBER 2003, pp-1860-1873.
- 2. Thomas Skotnicki, James A. Hutch by, Tsu-Jae King, H.-S. Philip Wong, and Frederic Boeuf, "The End of CMOS Scaling", IEEE CIRCUITS & DEVICES MAGAZINE, January2005,pp-16-26.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks.

End Semester Examination:-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q 1 will be compulsory and based on entire syllabus with sub-question of 2-5 marks
- 4. Remaining questions will be selected from all the modules.

	Teaching Scheme				Credits Assigned					
Course Code	Course Name	Theory	Practical and Oral	Tutorial	Theory	TW/Practical and Oral	Tutorial	Total		
ELXDL O2024	Deep Learning and Computer Vision	03			03			03		

	Subject Name	Examination Scheme									
				Theory N							
Subject Code		Internal assessment					Term	Practical			
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Work	and Oral	Total		
ELXDLO2024	Deep Learning and Computer Vision	20	20	20	80	3			100		

Course Objectives:

By the end of the course, students will be able to

- 1. Review image processing techniques for computer vision
- 2. Understand shape, region analysis and will able to detect lines, circles, ellipses.
- 3. Understand complexity of Deep Learning algorithms and their limitations.
- 4. Understand modern notions in data analysis oriented computing
- 5. Chose appropriate algorithms of Deep Learning.
- 6. Perform experiments in Deep Learning using real-world data.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Learn the scope of Image processing and Computer Vision
- 2. Analysis the different image analysis techniques for obtaining features of Image
- 3. Use Tensor Flow for building and testing deep learning models
- 4. Interpret the fundamental concepts of artificial neural networks and use of activation functions
- 5. Design and implement CNN and RNN architectures and use them as per applications
- 6. Build Deep Learning models in real time applications and interpret the results

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Computer Vision:	06
	1.1	Introduction and history of computer vision, Computer imaging systems,	
		lenses, Image formation and sensing.	
	1.2	Image analysis, pre-processing, Binary image analysis, thresholding.	
2		Feature Extraction:	06
	2.1	Edge detection methods and its performance, Hough transform,	
		Segmentation, Morphological filtering, Fourier transform and	
		convolution.	
	2.2	Feature extraction, shape, histogram, color, spectral, texture, Feature	
		analysis, feature vectors.	
3		Introduction to Deep learning:	08
	3.1	Supervised learning, Unsupervised learning, TensorFlow, Computational	
		Graph theory.	
	3.2	Regression, Gradient Descent, Tensor Board, Modularity, Sharing	
		Variables, Keras.	
4		Activation Functions:	10
	4.1	Sigmoid, ReLU, Softmax.	
	4.2	Artificial Neural Networks : Introduction, Perceptron Training Rule,	
		Gradient Descent Rule.	
	4.3	Gradient Descent and Backpropagation: Gradient Descent, Stochastic	
		Gradient Descent, Backpropagation algorithm, Examples of ANN	
5		Introduction to Convolutional Neural Networks:	09
	5.1	Introduction to CNNs, Kernel filter, Principles behind CNNs, Multiple	
		Filters, CNN applications.	
	5.2	Introduction to Recurrent Neural Networks: Introduction to RNNs,	
		Unfolded RNNs, Seq2Seq RNNs, LSTM, RNN applications.	
	5.3	Deep Learning applications: Image Processing, Speech Recognition,	
		Video Analytics.	
		Total	39

Text Books:

- 1. D. H. Ballard & C. M. Brown, "Computer Vision" Prentice Hall
- 2. "Computer Vision: Algorithms and Applications", Richard Szeliski.
- 3. Goodfellow, I., Bengio Y., and Courville A., "Deep learning", MIT Press.

Reference Books:

- 1. R. C. Gonzalez & P. Wintz. "Digital Image Processing".
- 2. Richard Hartley and Andrew Zisserman "Multiple View Geometry in Computer Vision", 2nd edition
- 3. Aurelien Geron "Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow" 2nd edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject code	Subject Name	Teac	hing sch	eme	Credit assigned				
ILO2021	Project Management	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Management (abbreviated as PM)	3	-	-	3	-	-	3	

	Subject Name	Examination scheme									
Sub Code		Theory (out of 100)					Pract.				
		Internal Assessment			End sem	Term work	and Oral	Oral	Total		
		Test1	Test2	Avg.	Exam		Orai				
ILO2021	Project Management	20	20	20	80	-	-	-	100		

Course Objectives	 To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.
Course Outcomes	 Student will be able to 1. Apply selection criteria and select an appropriate project from different options. 2. Write work break down structure for a project and develop a schedule based on it. 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically. 4. Use Earned value technique and determine & predict status of the project. 5. Capture lessons learned during project phases and document them for future reference

Module	Contents	Hours
1	Project Management Foundation: Definition of a project, Project Vs	5
	Operations, Necessity of project management, Triple constraints, Project	
	life cycles (typical & atypical) Project phases and stage gate process.	
	Role of project manager. Negotiations and resolving conflicts. Project	
	management in various organization structures. PM knowledge areas as	
	per Project Management Institute (PMI).	
2	Initiating Projects: How to get a project started, Selecting project	6
2	strategically, Project selection models (Numeric /Scoring Models and	0
	Non-numeric models), Project portfolio process, Project sponsor and	
	creating charter; Project proposal. Effective project team, Stages of	
	team development & growth (forming, storming, norming &	
2	performing), team dynamics.	0
3	Project Planning and Scheduling: Work Breakdown structure (WBS)	8
	and linear responsibility chart, Interface Co-ordination and concurrent	
	engineering, Project cost estimation and budgeting, Top down and	
	bottoms up budgeting, Networking and Scheduling techniques. PERT,	
	CPM, GANTT chart. Introduction to Project Management Information	
	System (PMIS).	
4	Planning Projects: Crashing project time, Resource loading and	6
	leveling, Goldratt's critical chain, Project Stakeholders and	
	Communication plan. Risk Management in projects: Risk management	
	planning, Risk identification and risk register. Qualitative and quantitative	
	risk assessment, Probability and impact matrix. Risk response strategies	
	for positive and negative risks	
5	Executing Projects: Planning monitoring and controlling cycle.	8
	Information needs and reporting, engaging with all stakeholders of the	
	projects. Team management, communication and project meetings.	
	Monitoring and Controlling Projects: Earned Value Management	
	techniques for measuring value of work completed; Using milestones for	
	measurement; change requests and scope creep. Project audit.	
	Project Contracting Project procurement management, contracting and	
	outsourcing,	
6	Project Leadership and Ethics: Introduction to project leadership, ethics	6
-	in projects. Multicultural and virtual projects.	-
	Closing the Project: Customer acceptance; Reasons of project	
	termination, Various types of project terminations (Extinction, Addition,	
	Integration, Starvation), Process of project termination, completing a final	
	report; doing a lessons learned analysis; acknowledging successes and	
	failures; Project management templates and other resources; Managing without authority; Areas of further study.	

Reference Books:

- Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 5. Question paper will comprise of total six question
- 6. All question carry equal marks
- 7. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 8. Only Four question need to be solved.

Subject code	Subject Name	Teac	hing sch	eme	Credit assigned				
ILO2022	Finance Management	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Management (abbreviated as FM)	3	-	-	3	-	-	3	

	Subject Name	Examination scheme								
Sub Code		Theory (out of 100)					Pract.			
		Internal Assessment			End sem	Term work	and Oral	Oral	Total	
		Test1	Test2	Avg.	Exam		0141			
ILO2022	Finance Management	20	20	20	80	-	-	-	100	

	Overview of Indian financial system, instruments and market
Course	• Basic concepts of value of money, returns and risks, corporate finance,
Objectives	working capital and its management
	• Knowledge about sources of finance, capital structure, dividend policy
Course	Student will be able to
Outcomes	
Outcomes	1. Understand Indian finance system and corporate finance
	2. Take investment, finance as well as dividend decisions

Module	Contents	Hours
	Overview of Indian Financial System: Characteristics, Components	6
	and Functions of Financial System. Financial Instruments: Meaning,	
	Characteristics and Classification of Basic Financial Instruments -	
	Equity Shares, Preference Shares, Bonds-Debentures, Certificates of	
1	Deposit, and Treasury Bills. Financial Markets: Meaning,	
1	Characteristics and Classification of Financial Markets — Capital	
	Market, Money Market and Foreign Currency Market. Financial	
	Institutions: Meaning, Characteristics and Classification of Financial	
	Institutions — Commercial Banks, Investment-Merchant Banks and	
	Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns	6
	and Expected Returns of a Single Security and a Two-security Portfolio;	
2	Measurement of Historical Risk and Expected Risk of a Single Security	
2	and a Two-security Portfolio.	
	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity,	
	and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity,	

	and Annuity Due; Continuous Compounding and Continuous								
	Discounting.								
	Overview of Corporate Finance: Objectives of Corporate Finance;	9							
	Functions of Corporate Finance-Investment Decision, Financing								
	Decision, and Dividend Decision.								
3	Financial Ratio Analysis: Overview of Financial Statements—Balance								
5	Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of								
	Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity								
	Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market								
	Ratios; Limitations of Ratio Analysis.								
4	Capital Budgeting: Meaning and Importance of Capital Budgeting;	10							
	Inputs for Capital Budgeting Decisions; Investment								
	Appraisal Criterion—Accounting Rate of Return, Payback								
	Period, Discounted Payback Period, Net Present Value(NPV),								
	Profitability Index, Internal Rate of Return (IRR), and Modified Internal								
	Rate of Return (MIRR) Working Capital Management: Concepts								
	of Meaning Working Capital; Importance of Working Capital								
	Management; Factors Affecting an Entity's Working Capital Needs;								
	Estimation of Working Capital Requirements; Management of								
	Inventories; Management of Receivables; and Management of Cash and								
	Marketable Securities.								

Books Recommended: Reference Books:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teac	hing scho	eme	Credit assigned			
	Entrepreneurship	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO2023	Development and Management (abbreviated as EDM)	3	-	-	3	-	-	3

Sub	Subject Name	Examination scheme										
		Tł	neory (o	ut of 1	00)		Pract.					
Code		Internal Assessment			End sem	Term work	and Oral	Oral	Total			
		Test1	Test2	Avg.	Exam		0141					
	Entrepreneurship											
ILO2023	Development and	20	20	20	80	-	-	-	100			
	Management											

Course	• To acquaint with entrepreneurship and management of business
Objectives	 Understand Indian environment for entrepreneurship
Objectives	• Idea of EDP, MSME
	Student will be able to
Course	1. Understand the concept of business plan and ownerships
Outcomes	2. Interpret key regulations and legal aspects of entrepreneurship in India
	3. Understand government policies for entrepreneurs

Module	Contents	Hours
1	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	4
2	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to	9

	Business Operations	
3	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	5
4	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	8
5	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	8
6	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	5

Books Recommended: Reference Books:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teac	Teaching scheme			Credit assigned				
П ОЗОЗА	Human Resource	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
ILO2024	Management (abbreviated as HRM)	3	-	-	3	-	-	3		

Sub Code	Subject Name	Examination scheme										
		Tl	neory (o	ut of 1	00)	– Pract.						
		Internal Assessment			End sem	Term work	and Oral	Oral	Total			
		Test1	Test2	Avg.	Exam		0141					
ILO2024	Human Resource Management	20	20	20	80	-	-	-	100			

Course Objectives	 To introduce the students with basic concepts, techniques and practices of the human resource management. To provide opportunity of learning Human resource Management (HRM) processes, related with the functions, and challenges in the emerging perspective. To familiarize the students about the latest developments, trends & different aspects of HRM. To acquaint the student with the importance of behavioral skills, Interpersonal, inter- group in an organizational setting. To prepare the students as future organizational change facilitators, stable leaders and managers, using the knowledge and techniques of human resource
Course Outcomes	 Learner will be able to Gain knowledge and understand the concepts about the different aspects of the human resource management. Understand and tackle the changes and challenges in today's diverse, dynamic organizational setting and culture. Utilize the behavioral skill sets learnt, in working with different people, teams & groups within the national and global environment. Apply the acquired techniques, knowledge and integrate it within the engineering/ non engineering working environment emerging as future engineers and managers.

Module	Contents	Hours
1	Introduction to HR: Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions. Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues.	05
2	Organizational Behavior (OB) : Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues, Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness, Perception: Attitude and Value, Effect of perception on Individual Decision-making, Attitude and Behavior. Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor); Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study	07
3	Organizational Structure & Design: Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	06
4	Human resource Planning: Recruitment and Selection process, Job- enrichment, Empowerment - Job-Satisfaction, employee morale. Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning. Training & Development: Identification of Training Needs, Training Methods	05
5	Emerging Trends in HR : Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development , managing processes & transformation in HR. Organizational Change, Culture, Environment, Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	06
6	 HR & MIS: Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries Strategic HRM Role of Strategic HRM in the modern business world, Concept of 	10

Strategy, Strategic Management Process, Approaches to Strategic					
Decision Making; Strategic Intent - Corporate Mission, Vision,					
Objectives and Goals					
Labor Laws & Industrial Relations					
Evolution of IR, IR issues in organizations, Overview of Labor Laws in					
India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments					
Act					

Reference Books:

- Stephen Robbins, Organizational Behavior, 16th Ed, 2013
 V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013,

Himalaya Publishing

6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson **Publications**

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teaching scheme			Credit assigned				
	Professional Ethics and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2025	Corporate Social								
	Responsibility (abbreviated as	3	-	-	3	-	-	3	
	PECSR)								

		Examination scheme								
Sub	Subject Name	Tl	neory (o	ut of 1	00)		Pract.			
Code		Internal Assessment			End sem	Term work	and Oral	Oral	Total	
		Test1	Test2	Avg.	Exam					
	Professional									
ILO2025	Ethics and	20	20	20	80	_	_	_	100	
11.02023	Corporate Social	20	20	20	00	-	-	_	100	
	Responsibility									

Course	To understand professional ethics in business
Objectives	To recognized corporate social responsibility
	Student will be able to
Course Outcomes	 Understand rights and duties of business Distinguish different aspects of corporate social responsibility Demonstrate professional ethics Understand legal aspects of corporate social responsibility

Module	Contents	Hours
1	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties of Business	04
2	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition; Oligopolistic Competition; Oligopolies and Public Policy Professional Ethics and the Environment: Dimensions of Pollution and Resource Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	08

3	 Professional Ethics of Consumer Protection: Markets and Consumer Protection; Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising Ethics; Consumer Privacy Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of Discrimination; Reservation of Jobs. 					
4	Introduction to Corporate Social Responsibility:Potential BusinessBenefits—Triple bottom line, Human resources, Risk management, Supplierrelations;Criticisms and concerns—Nature of business; Motives;Misdirection.Trajectory of Corporate Social Responsibility in India	05				
5	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate Social Responsibility and Public-Private Partnership (PPP) in India	08				
6	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of India, Legal Aspects of Corporate Social Responsibility—Companies Act, 2013.	08				

Reference Books:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. **In question paper weightage of each module**

will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teac	hing sch	eme	Credit assigned			
	Research	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO2026	26 Methodology (abbreviated as RM)	3	_	-	3	-	-	3

Sub	Subject Name	Examination scheme									
		Theory (out of 100)					Pract.				
Code		Internal Assessment			End sem	Term work	and Oral	Oral	Total		
		Test1	Test2	Avg.	Exam		orui				
ILO2026	Research Methodology	20	20	20	80	-	-	-	100		

Course Objectives	 To understand Research and Research Process To acquaint students with identifying problems for research and develop research strategies To familiarize students with the techniques of data collection, analysis of data and interpretation 						
Course Outcomes	 Student will be able to Prepare a preliminary research design for projects in their subject matter areas Accurately collect, analyze and report data Present complex data or situations clearly 						

Module	Contents								
1	Introduction and Basic Research Concepts: Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle. Research methods vs Methodology, Need of Research in Business and Social Sciences, Objectives of Research, Issues and Problems in Research, Characteristics of Research: Systematic, Valid, Verifiable, Empirical and Critical								
2	Types of Research: Basic Research, Applied Research, Descriptive Research, Analytical Research, Empirical Research, Qualitative and Quantitative Approaches	08							
3	Research Design and Sample Design : Research Design – Meaning, Types and Significance, Sample Design – Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors	08							

	Research Methodology : Meaning of Research Methodology, Stages in	08
	Scientific Research Process	
	a. Identification and Selection of Research Problem	
	b. Formulation of Research Problem	
	c. Review of Literature	
4	d. Formulation of Hypothesis	
4	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
5	Formulating Research Problem: Considerations: Relevance, Interest,	04
	Data Availability, Choice of data, Analysis of data, Generalization and	
	Interpretation of analysis	
6	Outcome of Research: Preparation of the report on conclusion reached,	04
	Validity Testing & Ethical Issues, Suggestions and Recommendation	

Reference Books:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teac	hing sch	eme	Credit assigned			
	IPR and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO2027	Patenting (abbreviated as IPRP)	3	-	-	3	-	-	3

Sub Code		Examination scheme									
	Subject Name	Theory (out of 100)					Pract.				
		Internal Assessment			End sem	Term work	and Oral	Oral	Total		
		Test1	Test2	Avg.	Exam						
ILO2027	IPR and Patenting	20	20	20	80	-	-	-	100		

	To understand intellectual property rights protection system						
Course	• To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures						
Objectives	• To get acquaintance with Patent search and patent filing procedure and						
	applications						
	Student will be able to						
Course	1. understand Intellectual Property assets						
Outcomes	2. assist individuals and organizations in capacity building						
Outcomes	3. work for development, promotion, protection, compliance, and						
	enforcement of Intellectual Property and Patenting						

Module	Contents	Hours
1	Introduction to Intellectual Property Rights (IPR): Meaning of IPR,	05
	Different category of IPR instruments - Patents, Trademarks,	
	Copyrights, Industrial Designs, Plant variety protection, Geographical	
	indications, Transfer of technology etc.	
	Importance of IPR in Modern Global Economic Environment:	
	Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR	
	as an instrument of development	
2	Enforcement of Intellectual Property Rights: Introduction, Magnitude	07
	of problem, Factors that create and sustain counterfeiting/piracy,	
	International agreements, International organizations (e.g. WIPO, WTO)	
	activein IPR enforcement	
	Indian Scenario of IPR: Introduction, History of IPR in India,	
	Overview of IP laws in India, Indian IPR, Administrative Machinery,	
	Major international treaties signed by India, Procedure for submitting	
	patent and Enforcement of IPR at national level etc.	

3	Emerging Issues in IPR: Challenges for IP in digital economy, e-	06
	commerce, human genome, biodiversity and traditional knowledge etc.	
4	Basics of Patents: Definition of Patents, Conditions of patentability,	07
	Patentable and non-patentable inventions, Types of patent applications	
	(e.g. Patent of addition etc), Process Patent and Product Patent,	
	Precautions while patenting, Patent specification Patent claims,	
	Disclosures and non-disclosures, Patent rights and infringement, Method	
	of getting a patent	
5	Patent Rules: Indian patent act, European scenario, US scenario,	08
	Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties	
	where India is a member (TRIPS agreement, Paris convention etc.)	
6	Procedure for Filing a Patent (National and International):	07
	Legislation and Salient Features, Patent Search, Drafting and Filing Patent	
	Applications, Processing of patent, Patent Litigation, Patent Publication	
	etc, Time frame and cost, Patent Licensing, Patent Infringement	
	Patent databases: Important websites, Searching international databases	

Reference Books:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield,2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph&Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. PrabhuddhaGanguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar andmohdlqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. KompalBansal and PraishitBansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications

- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teaching scheme			2	Credit assigned				
ILO2028	Digital Business	Theor	y Pra	ct. T	ut. T	heory	Pract.	Tut.	Total	
1L02028	Management (abbreviated as DBM)	3	-		-	3	-	-	3	
				E	xamina	tion sch	eme			
Sub		Theory (out of 100)))				
Code	Subject Name		Internal I Assessment			Tern work	and	Oral	Total	
		Test1	Test2	Avg.	Exam					
ILO2028	Digital Business Management	20	20	20	80	-	-	-	100	

Course Objectives	 To familiarize with digital business concept To acquaint with E-commerce To give insights into E-business and its strategies
Course Outcomes	 Student will be able to 1. Identify drivers of digital business 2. Illustrate various approaches and techniques for E-business and management 3. Prepare E-business plan

Module	Contents	Hours
1	Introduction to Digital Business: Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business - Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business,	09

2	Overview of E-Commerce: E-Commerce- Meaning, Retailing in e- commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e- markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E- government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	06
3	Digital Business Support services : ERP as e –business backbone, knowledge Tope Apps, Information and referral system, Application Development : Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e- business, Managing Risks in e –business, Security Threats to e- business -Security Overview, Electronic Commerce Threats, Encryption, ryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key	06
5	E-Business Strategy -E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)	04
6	M Materializing e-business: From Idea to Realization-Business plan preparation Case Studies and presentations	08

Reference Books:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan

- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:10.1787/9789264221796-en OECD Publishing

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject code	Subject Name	Teac	hing sch	eme	Credit assigned			
	Environmental Monogoment	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO2029	Management (abbreviated as EVM)	3	-	-	3	-	-	3

Sub Code		Examination scheme									
	Subject Name	Tl	neory (o	ut of 1	00)		Pract.				
		Internal Assessment			End sem	Term work	and Oral	Oral	Total		
		Test1	Test2	Avg.	Exam		0141				
ILO2029	Environmental Management	20	20	20	80	-	-	-	100		

	• Understand and identify environmental issues relevant to India and global					
Course	concerns					
Objectives	• Learn concepts of ecology					
	Familiarise environment related legislations					
	Student will be able to					
Course	1. Understand the concept of environmental management					
Outcomes	2. Understand ecosystem and interdependence, food chain etc.					
	3. Understand and interpret environment related legislations					

Module	Contents	Hours
1	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, the Energy scenario.	10
2	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	06
3	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05

4	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
5	Total Quality Environmental Management, ISO-14000, EMS certification.	05
6	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

Reference Books:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part(a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Subject Code	Subject	Teaching Scheme			Credits Assigned				
Couc	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXL2021	Laboratory- III Emerging Trends in SOC Design		02			01		01	

					Examin	ation Scheme	ion Scheme					
		Tł		Theory	heory Marks							
Subject Code	Subject Name	Int	ernal a	ssessment	End	End Exam		Practical And	Total			
	TestTest12		Avg of Test 1 and Test 2	Sem. Exam	duration Hours	Work	Oral	I otai				
ELXL2021	Laboratory-III Emerging Trends in SOC Design	-	-	-	-	-	25	25	50			

Term Work:

At least 10 experiments covering the entire syllabus of ELXC2022 (**Emerging Trends in SOC Design**) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiments must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exams will be based on the entire

Laboratory Outcomes: After successful completion of the course students will be able to:

- 1. **Develop** commercial tools for SoCs
- 2. **Demonstrate** how to program a processor on a Fixed Virtual Platform using a mixture of Verilog, Assembly language and C code.
- 3. Configure and implement peripherals to control General Purpose Input and Output Ports (GPIOs).
- 4. **Understand** the operation of GPIO, memory access and controllers, and various memory types in a typical SoC.
- 5. **Understand** the properties of a System on Chip, and its design flow
- 6. **Configure** and implement SoC for different applications.

Note: The action verbs according to Bloom's taxonomy are highlighted in bold.

Sr. No.	Experiment Title
	Digital(Any 8)
1	Implement Rising Edge D Flip Flop on FPGA
2	Implement full adder on FPGA
3	Implement 2-bit comparator on FPGA
4	Implement up-counter with test-bench on FPGA
5	Implement Arithmetic Logic Unit (ALU) on FPGA
6	Implement debouncing buttons on FPGA
7	Implement Decoders on FPGA
8	Implement Multiplexers on FPGA
9	Implement Clock divider on FPGA
10	Implement PWM generator on FPGA
11	Implement single-port RAM on FPGA
12	Implement 16-bit single-cycle MIPS processor on FPGA
13	Implement reading image files into FPGA
14	Non-linear Lookup Table Implementation on FPGA
15	Implement Moore FSM Sequence Detector on FPGA
16	Implement Reference designs for SoCs, MCUs, ASICs, and FPGAs using Xilinx®, Intel®, and Texas Instruments TM design tools.

Suggested List of Experiments

	Analog(Any Two)
1	Designing and testing a sinewave table in ROM using SPI
2	A fixed /variable frequency sinewave generator using SPI
3	D-to-A conversion using pulse-width modulation using SPI

Note: Experiments can be performed online using simulation software as well as hardware. Simulation software Xilinx can be used to perform the experiments.

(Expected percentage of H/w and software experiments should be 20% & 80% respectively)

Note:

Suggested List of Experiments is indicative. However, flexibility lies with individual course instructors to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Course Code	Course Name	Teaching Scheme (Hrs)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXL2022	LAB-1V Advanced Digital Signal Processing LAB	-	2	-	-	1	-	1	

Course	Course				Examin	ation Scheme				
Code	Name		The	ory Marks						
		Inter	rnal ass	sessment	End	Term	Practical	Oral	Total	
		Test	Test	Avg. Of	Sem.	Work				
		1	2	Test 1 &	Exam					
				Test 2						
ELXL202		-	-	-	-	25	-	25	50	
2	LAB-1V									
	Advanced									
	Digital signal									
	Processing									
	LAB									

Course Pre-Requisites:

- 1. Basic knowledge of Signals and Systems, DSP.
- 2. Acquaintance of Simulation languages and software tools.

Course Objectives:

- 1. To design and simulate basic DSP systems and multirate systems for practical applications.
- 2. To design and simulate DSP systems for spectral analysis of signals and optimum filters for different applications
- 3. To design and simulate adaptive filters for real world applications

Course Outcomes:

Students will be able to

- 1. Implement basic DSP algorithms and multirate techniques for various situations.
- 2. Implement optimum filters for real world applications and extract spectral information.
- 3. Design and test adaptive filter systems for practical applications.

List of Experiments:

- 1. Basic filtering operations, like noise reduction using FIR filter, enhancement of ECG signal using notch filtering etc.
- 2. IIR filter .Simulation of Digital audio equalizer.
- 3. Biomedical signal processing, ECG signal processing.
- 4. Algorithms in DTMF tone generation.
- 5. Oversampling and Analog to digital conversion resolution.
- 6. Sampling rate reduction by an integer factor, sampling rate increase by an integer factor.
- 7. Changing Sampling rate by a non integer factor L/M.
- 8. Upsampling and Interpolation filter processes in CD audio systems.
- 9. Noise cancellation using adaptive filters.
- 10. System modeling using adaptive filters.

- 11. Line enhancement using linear prediction.
- 12. Subband decomposition and two channel perfect reconstructions QMF bank.

Students are required to perform any **six experiments** from the above list covering most of the topics in Advanced Signal processing and perform **one mini project** preferably based on any of the above topics 2,4,8,or 12.

Reference Books:

- 1. Digital Signal Processing Fundamentals & Applications.2/e Li Tan & Jean Jiang Elsevier, Academic press.
- 2. Digital Signal Processing. A computer based approach, S.K.Mitra, Tata Mc Graw Hill.

SEMESTER-III

Course			hing Schem	e(Hours)	Credits Assigned				
Code	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXS3031	Seminar		06			03		03	
ELXD3031	Dissertation-I		24			12		12	
тс	DTAL		30			15		15	

				ŀ	Examinati	on Schem	e		
			Theory Mar						
Course	Course		ternal A	ssessment	End	Term			
Code	Course Name	Test	Test		Sem	Work	Practical	Oral	Total
		1	2	Average	Exam	WUIK			
ELXS3031	Seminar					50		50	100
ELXD3031	Dissertation-I					100			100
	TC	DTAL				150		50	200

SEMESTER-IV

		Teach	Teaching Scheme(Hours)			Credits Assigned					
Course Code	Course Name	Theory	Practica l	Tutorial	Theory	Practical	Tutorial	Total			
ELXD4041	Dissertation-II		30			15		15			
TC	TOTAL		30			15		15			

		Examination Scheme								
			r	Fheory Ma	rks					
Course	Course		ernal As	sessment	End	Term				
Code	Course Name	Test1	Test2	Average	Sem Exam	Work	Practical	Oral	Total	
ELXD4041	Dissertation-II					100		100	200	
	T	OTAL				100		100	200	

Note:

• In case of Seminar (ELXS3031), 01 Hour / week / student should be considered for the calculation of load of a teacher

• In case of Dissertation I (ELXD3032) and Dissertation II (ETXD4041), 02 Hour/week/student should be considered for the calculation of load of a teacher

SEMESTER III

Course Code	Course Name	Credits
ELXS3031	Seminar	03

Guidelines for Seminar

- Seminar should be based on thrust areas in Electronics and Telecommunication Engineering
- Students should do literature survey and identify the topic of seminar and finalize in consultation with Guide/Supervisor.
- Students should use multiple literatures and understand the topic and compile the report in standard format and present infront of Panel of Examiners appointed by the Head of the Department/Institute of respective Programme.

Seminar should be assessed based on following points

- Quality of Literature survey and Novelty in the topic
- Relevance to the specialization
- Understanding of the topic
- Quality of Written and Oral Presentation

IMPORTANT NOTE:

- 1. Assessment of Seminar will be carried out by a pair of Internal and External examiner. The external examiner should be selected from approved panel of examiners for Seminar by University of Mumbai, OR faculty from Premier Educational Institutions /Research Organizations such as IIT, NIT, BARC, TIFR, DRDO, etc. OR a person having minimum Post-Graduate qualification with at least five years' experience in Industries.
- 2. Literature survey in case of seminar is based on the broader area of interest in recent developments and for dissertation it should be focused mainly on identified problem.
- 3. At least 4-5 hours of course on Research Methodology should be conducted which includes Literature Survey, Problems Identification, Analysis and Interpretation of Results and Technical Paper Writing in the beginning of 3rd Semester.

SEMESTER III/IV

Course Code	Course Name	Credits
ELXD3031/ELXD4041	Dissertation I/	12+15
	Dissertation-II	

Guidelines for Dissertation

Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literature and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Dissertation I

- Dissertation I should be assessed based on following points
- > Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization
- Clarity of objective and scope
- Dissertation I should be assessed through a presentation by a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Dissertation II

- Dissertation II should be assessed based on following points
- > Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- > Relevance to the specialization or current Research / Industrial trends
- Clarity of objective and scope
- > Quality of work attempted
- Validation of results
- > Quality of Written and Oral Presentation
- Dissertation II should be assessed through a presentation jointly by Internal and External Examiners appointed by the University of Mumbai
- Students should publish at least one paper based on the work in reputed International / National Conference (desirably in Refereed Journal)