# UOM Exam Second Half 2021\_Question Paper\_R2019/Electronics/PCS/ELC\_501/Sem-V

Dear Students,

- 1. This paper contains 20 Marks MCQ & 60 Marks subjective section for 2 hours 30 minutes duration.
- 2. Answers of the University Question Paper is to be written on A4 size paper including MCQ and it has to made into a single PDF file.
- 3. This is proctored examination, Kindly keep your camera on.
- 4. Use only your registered college email address (if applicable) to appear for examination.
- 5. Keep your hall ticket or college Id while appearing the examination.
- 6. Please keep a snapshot when your submission is complete.
- 7. In case of any difficulty/query contact block supervisor.
- 8. You have to write Date of Examination, Seat number, Program Scheme and Semester, Subject Name and Signature on Every Page
- 9. Remain in meet with your camera on and you in clear view throughout the duration of the exam.

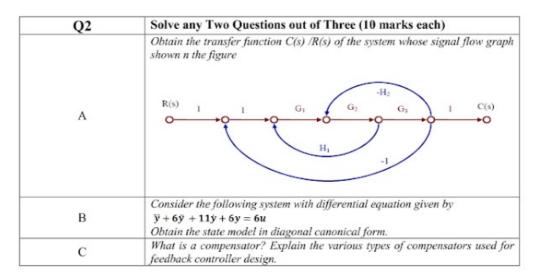
|    | the exam.                     |   |  |
|----|-------------------------------|---|--|
| *  | * Required                    |   |  |
| 1. | Email *                       |   |  |
| 2. | Enter your Name *             |   |  |
| 3. | Enter your Exam Seat Number * | _ |  |
| 4. | Class *                       |   |  |

#### 5. Roll No \*

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

### Questions

#### Examination Second Half 2021 under cluster 06


## (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 22<sup>nd</sup> November2021 to 5<sup>th</sup> January 2022

Program: Electronics Engineering Curriculum Scheme: Rev2019 Examination: TE Semester V

Course Code: ELC501 and Course Name: Principles of Control System

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.        | is a closed loop system.                                                                                                                                        |
| Option A: | Auto-pilot for an aircraft                                                                                                                                      |
| Option B: | Direct current generator                                                                                                                                        |
| Option C: | Car starter                                                                                                                                                     |
| Option D: | Electric switch                                                                                                                                                 |
| 2.        | Transfer function of a system is used to calculate which of the following?                                                                                      |
| Option A: | The order of the system                                                                                                                                         |
| Option B: | The time constant                                                                                                                                               |
| Option C: | The output for any given input                                                                                                                                  |
| Option D: | The steady state gain                                                                                                                                           |
| 3.        | If a system is said to have a damping $\xi = 0.5$ with the natural frequency $\omega_n = 4$ rad/sec what will be the value of resonant frequency $(\omega_r)$ ? |
| Option A: | 2.828 rad/s                                                                                                                                                     |
| Option B: | 1.7352 rad/s                                                                                                                                                    |
| Option C: | 2.3421 rad/s                                                                                                                                                    |
| Option D: | 3.66 rad/s                                                                                                                                                      |
| 4.        | If an impulse response of a system is e <sup>5t</sup> , what would be its transfer function?                                                                    |
| Option A: | 1/(s-5)                                                                                                                                                         |
| Option B: | 1/(s+5)                                                                                                                                                         |
| Option C: | (s+1)/(s+5)                                                                                                                                                     |
| Option D: | (s <sup>2</sup> - 5s)/ (s-5)                                                                                                                                    |
| 5.        | Pole placement for state feedback controller design can be done using?                                                                                          |
| Option A: | Hurwitz Criterion                                                                                                                                               |
| Option B: | Ackerman's formula                                                                                                                                              |
| Option C: | Mason's gain formula                                                                                                                                            |
| Option D: | Transfer function                                                                                                                                               |
| 6.        | To increase damping of pair of complex roots compensator used is                                                                                                |
| Option A: | Phase lag                                                                                                                                                       |
| Option B: | Phase lead                                                                                                                                                      |
| Option C: | Phase lag lead                                                                                                                                                  |
| Option D: | One with 60° lead circuit                                                                                                                                       |
| 7.        | The state equation in the phase canonical form can be obtained from the transfer function by:                                                                   |
| Option A: | Direct decomposition                                                                                                                                            |
| Option B: | Cascaded decomposition                                                                                                                                          |

| Option C: | Inverse decomposition                                                                                                                  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
| Option D: | Parallel decomposition                                                                                                                 |
| 8.        | If the system is specified by open loop transfer function $G(s)H(s) = k / s(s+3) (s+2)$ how many root loci proceed to end at infinity? |
| Option A: | 2                                                                                                                                      |
| Option B: | 6                                                                                                                                      |
| Option C: | 5                                                                                                                                      |
| Option D: | 3                                                                                                                                      |
| 9.        | Which mechanism in control engineering implies an ability to measure the state by taking measurements at output?                       |
| Option A: | Controllability                                                                                                                        |
| Option B: | Observability                                                                                                                          |
| Option C: | Differentiability                                                                                                                      |
| Option D: | Adaptability                                                                                                                           |
| 10.       | If the phase angle at gain crossover frequency is estimated to be -110°, what will be the value of phase margin of the system?         |
| Option A: | 23°                                                                                                                                    |
| Option B: | 45°                                                                                                                                    |
| Option C: | 60°                                                                                                                                    |
| Option D: | 70°                                                                                                                                    |



| Q3 | Solve any Two Questions out of Three (10 marks each)                                                                                                                                                                                                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А  | The unity feedback system is characterized by an open loop transfer function $\frac{K}{S(S+10)}$ . Determine the gain K, so that the system will have a damping ratio of 0.5. For this value of K, determine settling time, peak overshoot and time to peak overshoot for a unit step input. |
| В  | For the system having open loop transfer function, $G(s)H(s) = \frac{100}{s(s+1)(s+10)}$<br>Determine the stability of the system by plotting Bode plot for the system.                                                                                                                      |
| С  | Explain with an example, the steps to design Lag compensator using Root Locus.                                                                                                                                                                                                               |

| Q4 | Solve any Two Questions out of Three (10 marks each)                                                                                                                                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | Draw the root-locus of the feedback system whose open-loop transfer function is given by $G(s)H(s) = \frac{K}{s(s+2)(s+4)}$                                                                                                                              |
| В  | The open loop transfer function of the system is given by $G(s)H(s) = \frac{50}{(s+1)(s+2)}.$ Using Nyquist criterion, examine closed loop stability of the system.                                                                                      |
| С  | Check the controllability and observability of the following state space system $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$ |

| 6. | Upload your Answer Sheet including MCQ and subjective part of the question                                                |
|----|---------------------------------------------------------------------------------------------------------------------------|
|    | paper here. *                                                                                                             |
|    | The name of the PDF file should be in the below said format (University Seat Number_ Subject Abbreviation_ Students Name) |
|    | Files submitted:                                                                                                          |

## University of Mumbai Exam Second Half 2021\_Question Paper\_R2019/Electronics/DSP/ELC\_502/ Sem-V

Dear Students,

- 1. This paper contains 20 Marks MCQ & 60 Marks subjective section for 2 hours 30 minutes duration.
- 2. Answers of the University Question Paper is to be written on A4 size paper including MCQ and it has to made into a single PDF file.
- 3. This is proctored examination, Kindly keep your camera on.
- 4. Use only your registered college email address (if applicable) to appear for examination.
- 5. Keep your hall ticket or college Id while appearing the examination.
- 6. Please keep a snapshot when your submission is complete.
- 7. In case of any difficulty/query contact block supervisor.
- 8. You have to write Date of Examination, Seat number, Program Scheme and Semester, Subject Name and Signature on Every Page
- 9. Remain in meet with your camera on and you in clear view throughout the duration of the exam

|    | the Caulii.                                     |
|----|-------------------------------------------------|
| *  | Required                                        |
| 1. | Email *                                         |
| 2. | Enter your Name *                               |
| 3. | Enter your Exam Seat Number(as on Hallticket) * |
| 4. | Roll No *                                       |

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

## Questions

## Examination Second Half 2021 under cluster 06

(Lead College: Vidyavardhini's College of Engg Tech)
Examinations Commencing from 22<sup>nd</sup> November 2021 to 5<sup>th</sup> January 2022

Program: Electronics Engineering

Curriculum Scheme: Rev2019 Examination: TE Semester V

Course Code: ELC502 and Course Name: Digital Signal Processing

| Q1.                                                                                                                             | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.                                                                                                                              | If sequence $x[n] = \{1, 2, 3, 4\}$ is given and have done operation $x(n-2)_4$ then sequence will be                                                                                   |
| Option A:                                                                                                                       | (3, 4, 1, 2)                                                                                                                                                                            |
| Option B:                                                                                                                       | {1, 4, 3, 2}                                                                                                                                                                            |
| Option C:                                                                                                                       | {1, 2, 3, 4}                                                                                                                                                                            |
| Option D:                                                                                                                       | {4, 3, 1, 2}                                                                                                                                                                            |
| 2.                                                                                                                              | If x[n] = {1, 1} and 4 point DFT calculated and X[1] = 1-j then X[3] = ?                                                                                                                |
| Option A:                                                                                                                       | 1-j                                                                                                                                                                                     |
| Option B:                                                                                                                       | 1+j                                                                                                                                                                                     |
| Option C:                                                                                                                       | 0                                                                                                                                                                                       |
| Option D:                                                                                                                       | 2                                                                                                                                                                                       |
| 3.                                                                                                                              | If $x[n]$ is a 8-point real sequence and its DFT first five points are $X[k] = \{36, -4+j9.656, -4+j4, -4+j1.656, -4\}$ then what will be the coefficients $X[5]$ , $X[6]$ and $X[7]$ ? |
| Option A:                                                                                                                       | X[5]=-4-j1.656, X[6]=-4+4j, X[7]=-4-j9.656                                                                                                                                              |
| Option B:                                                                                                                       | X[5]= -4-j1.656, X[6] = -4-4j, X[7] = -4-j9.656                                                                                                                                         |
| Option C:                                                                                                                       | X[5] = -4+j1.656, $X[6] = -4$ , $X[7] = -4-j9.656$                                                                                                                                      |
| Option D:                                                                                                                       | X[5]= -4+j1.656 , X[6] = 4 , X[7] = -4-j9.656                                                                                                                                           |
| 4.                                                                                                                              | The two sequences x and y are given by, $x(n) = \{1, 2, -1, 1\}$ and $y(n) = \{2, 4, 2, 1\}$ . The circular convolution of x and y will be                                              |
| Option A:                                                                                                                       | {6, 9, 9, 3}                                                                                                                                                                            |
| Option B:                                                                                                                       | {10, 11, 6, 8}                                                                                                                                                                          |
| Option C:                                                                                                                       | {8, 7, 8, 12}                                                                                                                                                                           |
| Option D:                                                                                                                       | {12, 8, 7, 8}                                                                                                                                                                           |
| 5. If $x[n] = \{5, 6, 7, 8\}$ and $x1[n] = \{5, 8, 7, 6\}$ are the sequences then what is relative between $x[n]$ and $x1[n]$ ? |                                                                                                                                                                                         |
| Option A:                                                                                                                       | x1[n] = x[(n-1)]                                                                                                                                                                        |
| Option B:                                                                                                                       | x1[n] = x[(n+1)]                                                                                                                                                                        |
| Option C:                                                                                                                       | x <b>1</b> [n] = x[(-n)]                                                                                                                                                                |
| Option D:                                                                                                                       | x1[n]=x[(n-2)]                                                                                                                                                                          |

| 6.                        | The poles of a butterworth filter lies on a circle of radius equal to                                                                                                                                                                        |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Option A:                 | cutoff frequency                                                                                                                                                                                                                             |  |
| Option B:                 | passband edge frequency                                                                                                                                                                                                                      |  |
| Option C:                 | stopband edge frequency                                                                                                                                                                                                                      |  |
| Option D:                 | sampling frequency                                                                                                                                                                                                                           |  |
| 7.                        | Sampling time $T=1$ second , Pass band digital frequency = 0.2 $\pi$ and stopband digital frequency is = 0.3 $\pi$ , what are the corresponding specifications for pass band and stoband in analog domain for Impulse Invariant method?      |  |
| Option A:                 | $2 \pi$ and $3 \pi$                                                                                                                                                                                                                          |  |
| Option B:                 | 20 π and 30 π                                                                                                                                                                                                                                |  |
| Option C:                 | $0.2 \pi$ and $0.3 \pi$                                                                                                                                                                                                                      |  |
| Option D:                 | 0.02 π and 0.03 π                                                                                                                                                                                                                            |  |
| 8.                        | Sampling time $T=1$ second , Pass band digital frequency = $0.2\pi$ and stopband digital frequency is = $0.6\pi$ , what are the corresponding specifications for pass band and stopband in analog domain for Bilinear Transformation method? |  |
| Option A:                 | 7.06 and 18.9805                                                                                                                                                                                                                             |  |
| Option B: 0.589 and 1.593 |                                                                                                                                                                                                                                              |  |
| Option C:                 | 0.6498 and 2.75                                                                                                                                                                                                                              |  |
| Option D:                 | 0.8284 and 0.20                                                                                                                                                                                                                              |  |
| 9.                        | Consider the discrete time signal, $x(n) = \{1,1,2,2,3,3,4,4,5,5\}$<br>Determine the down sampled (Decimation) version of the signal for the sampling rate reduction factor $D = 2$                                                          |  |
| Option A:                 | { 1,2,2,4,5}                                                                                                                                                                                                                                 |  |
| Option B:                 | {1,3,3,5,5,4,4}                                                                                                                                                                                                                              |  |
| Option C:                 | {2,6,10,14,18,22}                                                                                                                                                                                                                            |  |
| Option D:                 | {1,2,3,4,5}                                                                                                                                                                                                                                  |  |
| 10.                       | Which of the following is the difference equation of the FIR filter of length M, input $x(n)$ and output $y(n)$ ?                                                                                                                            |  |
| Option A:                 | $y(n) = \sum_{k=0}^{M+1} b_k x(n+k)$                                                                                                                                                                                                         |  |
| Option B:                 | $y(n) = \sum_{k=0}^{M+1} b_k x(n-k)$                                                                                                                                                                                                         |  |
| Option C:                 | $y(n) = \sum_{k=0}^{M-1} b_k x(n-k)$                                                                                                                                                                                                         |  |
| Option D:                 | $y(n) = \sum_{k=1}^{M-1} b_k x(n+k)$                                                                                                                                                                                                         |  |

| Q2. | Solve any Four out of Six                                                               | (5 marks each)         |
|-----|-----------------------------------------------------------------------------------------|------------------------|
| A   | Why the limit of 'n' in DFT is 0 to N-1. I why the signal is periodic in time domain in | •                      |
| В   | Explain design steps to designing FIR 1 sampling method.                                | filter using frequency |
| С   | Explain application of DSP processor<br>Processing.                                     | to RADAR Signal        |
| D   | $X(K)=\{14, -2 + 2j, -2, -2-2j\}$ find $x(n)$ usi algorithm                             | ng IDIF-FFT            |

| Е | If IDFT $\{X(k)\}=x[n]=\{1,2,3,4\}$ using DFT properties, evaluate IDFT of $\{X(k-1)\}$                                      |
|---|------------------------------------------------------------------------------------------------------------------------------|
| F | Explain the mapping from S-plane to Z-plane using impulse invariance technique. Also explain the limitations of this method. |

| Q3. | Solve any Two Questions out of Three (10 marks each)                                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| A   | Compute circular convolution of following sequence using DFT and IDFT $x(n) = \{2, 1, 2, 1\}$ and $h(n) = \{1, 2, 3, 4\}$ |
| В   | Design linear phase FIR low pass filter of length 7 and cutoff frequency 1 rad/sec using Hamming window.                  |
| С   | Find linear convolution overlap-add method for following sequence $x(n) = \{1, 1, 2, 2, 3, 3\}$ and $h(n) = \{1, 2, \}$   |

| Q4.A | Solve any Two (5 r                                                                                                            | narks each)   |
|------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| i.   | Explain in detail the characteristics of Finite Imp                                                                           | oulse         |
|      | Response filter.                                                                                                              |               |
| ii.  | Explain the process of decimation with frequence                                                                              | y spectrum.   |
| iii. | Explain Finite word length effects in digital filter                                                                          | rs            |
| В    | Solve any One<br>marks each)                                                                                                  | ( 10          |
| i.   | Design a Butterworth Digital IIR Low Pass filte satisfies following constrains using Bilinear transmethod assume Ts = 1sec.   |               |
|      | $ 0.707 \le  H(e^{j\omega})  \le 1$ ; $0 \le \omega \le 0.3\pi$<br>$ H(e^{j\omega})  \le 0.08$ ; $0.75\pi \le \omega \le \pi$ |               |
| ii.  | Explain Architecture of TMS320C67XX DSP Pr                                                                                    | rocessor with |
|      | the help of neat block diagram.                                                                                               |               |

| 5. | paper here. *                         |
|----|---------------------------------------|
|    | Files submitted:                      |
| 6. | Have you uploaded the correct file? * |
|    | Mark only one oval.                   |
|    | Yes                                   |
|    | No                                    |
|    |                                       |
|    |                                       |

## University of Mumbai Exam Second Half 2021\_Question

## Paper\_R2019/Electronics/Linear Integrated Circuits/ELC\_503/ Sem-V

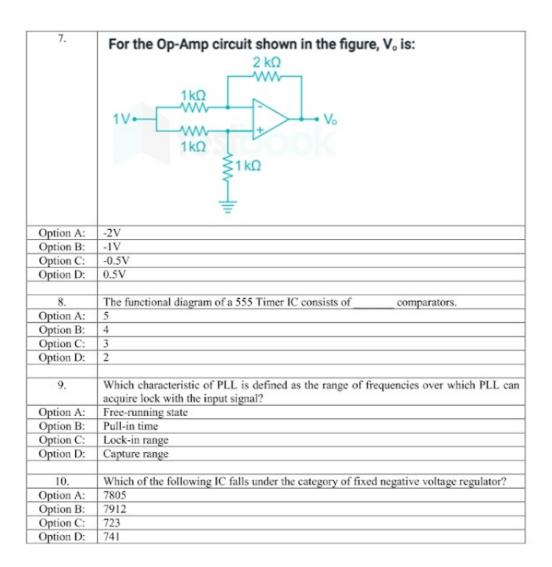
Dear Students,

- 1. This paper contains 20 Marks MCQ & 60 Marks subjective section for 2 hours 30 minutes duration.
- 2. Answers of the University Question Paper is to be written on A4 size paper including MCQ and it has to made into a single PDF file.
- 3. This is proctored examination, Kindly keep your camera on.
- 4. Use only your registered college email address (if applicable) to appear for examination.
- 5. Keep your hall ticket or college Id while appearing the examination.
- 6. Please keep a snapshot when your submission is complete.
- 7. In case of any difficulty/query contact block supervisor.
- 8. You have to write Date of Examination, Seat number, Program Scheme and Semester, Subject Name and Signature on Every Page
- 9. Remain in meet with your camera on and you in clear view throughout the duration of the exam.

| Required                      |
|-------------------------------|
|                               |
| Email *                       |
|                               |
|                               |
|                               |
|                               |
| Enter your Name *             |
|                               |
|                               |
|                               |
| Enter your Exam Seat Number * |
|                               |
|                               |
|                               |
| Roll Number *                 |
|                               |
|                               |

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

## Questions


#### Examination Second Half 2021 under cluster 06

## (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 22<sup>nd</sup> November2021 to 5<sup>th</sup> January 2022

Program: Electronics Engineering Curriculum Scheme: Rev2019 Examination: TE Semester V

Course Code: ELC503 and Course Name: Linear Integrated Circuits

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |  |
|-----------|-----------------------------------------------------------------------------------------------------------|--|
| 1.        | The common mode gain is                                                                                   |  |
| Option A: | very high                                                                                                 |  |
| Option B: | very low                                                                                                  |  |
| Option C: | always unity                                                                                              |  |
| Option D: | unpredictable                                                                                             |  |
| 2.        | When a step input is given to an op-amp integrator, the output will be                                    |  |
| Option A: | A ramp                                                                                                    |  |
| Option B: | A sinusoidal wave                                                                                         |  |
| Option C: | A rectangular wave                                                                                        |  |
| Option D: | A triangular wave with dc bias                                                                            |  |
| 3.        | The output of particular op-amp increases 8V in 12 µS. The slew rate is                                   |  |
| Option A: | 90 V/ μS                                                                                                  |  |
| Option B: | 0.67 V/ μS                                                                                                |  |
| Option C: | 1.5 V/ μS                                                                                                 |  |
| Option D: | 96 V/ μS                                                                                                  |  |
| 4.        | For an op-amp with negative feedback, the output is                                                       |  |
| Option A: | equal to the input                                                                                        |  |
| Option B: | increased                                                                                                 |  |
| Option C: | fed back to the inverting input                                                                           |  |
| Option D: | fed back to the non-inverting input                                                                       |  |
| 5.        | The ideal op-amp has following characteristics                                                            |  |
| Option A: | $Ri = \infty$ , $A = \infty$ , $Ro = 0$                                                                   |  |
| Option B: | $Ri = 0, A = \infty, Ro = 0$                                                                              |  |
| Option C: | $Ri = \infty$ , $A = \infty$ , $Ro = \infty$                                                              |  |
| Option D: | $Ri = 0, A = \infty, Ro = \infty$                                                                         |  |
| 6.        | Switching regulators are series type regulators, which haspower dissipation anefficiency.                 |  |
| Option A: | Increased, increased                                                                                      |  |
| Option B: | Increased, reduced                                                                                        |  |
| Option C: | Reduced, reduced                                                                                          |  |
| Option D: | Reduced, increased                                                                                        |  |



| Q2.<br>(20 Marks) | Solve any Four out of Six (5 marks each)                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------|
| E 249             | "Define the following characteristics of a practical op-amp.                                            |
| A                 | Input offset voltage                                                                                    |
| A                 | CMRR                                                                                                    |
|                   | Slew rate"                                                                                              |
| В                 | Make a comparison between first order and second order filters.                                         |
| C                 | What is comparator? Explain working of inverting comparator using op-amp with neat diagram and waveform |
| D                 | State the features of power amplifier IC LM 380                                                         |
| Е                 | Write short note on 3 pin voltage regulators.                                                           |
| F                 | Explain the Barkhausen criteria for sustained oscillations and its impact.                              |

| Q3.<br>(20 Marks) | Solve any Two Questions out of Three (10 marks each)                                                                                                                                                                |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A                 | What is the difference between normal rectifier and precision rectifier? With<br>neat circuit diagram & waveform, explain working of precision half wave<br>rectifier.                                              |  |
| В                 | For the inverting Schmitt trigger as shown in the figure, find $V_{TH}$ , $V_{TL}$ and hysteresis voltage and draw the input and output waveforms $V_{0}(V_{sat} = \pm 13V)$ $V_{0}(V_{sat} = \pm 13V)$ $R_{1}(8k)$ |  |
| С                 | Explain in details about successive approximation type of ADC.                                                                                                                                                      |  |

| Q4.        | Solve any Two Questions out of Three (10 marks each)                                                                                                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (20 Marks) |                                                                                                                                                                                      |
| A          | What is phase locked loop? Explain operation of PLL with the help of block diagram.                                                                                                  |
| В          | State the features of IC723 & design voltage regulator to give 12V output with short circuit limit to 60mA using IC 723.                                                             |
| С          | In the astable multivibrator using IC 555, $R_A$ =2.1 $k\Omega$ , $R_B$ =6.8 $k\Omega$ and C=0.01 $\mu$ F. Calculate $t_{high}$ , $t_{low}$ , free running frequency and Duty cycle. |

| 5. | Upload your Answer Sheet including MCQ and subjective part of the question paper here. * |
|----|------------------------------------------------------------------------------------------|
|    | Files submitted:                                                                         |
| 6. | Have you uploaded the correct file? *                                                    |
|    | Mark only one oval.                                                                      |
|    | Yes                                                                                      |
|    | No                                                                                       |
|    |                                                                                          |
|    |                                                                                          |

## University of Mumbai Exam Second Half 2021\_Question Paper\_R2019/Electronics/DC/ELC\_504/ Sem-V

Dear Students,

- 1. This paper contains 20 Marks MCQ & 60 Marks subjective section for 2 hours 30 minutes duration.
- 2. Answers of the University Question Paper is to be written on A4 size paper including MCQ and it has to made into a single PDF file.
- 3. This is proctored examination, Kindly keep your camera on.
- 4. Use only your registered college email address (if applicable) to appear for examination.
- 5. Keep your hall ticket or college Id while appearing the examination.
- 6. Please keep a snapshot when your submission is complete.
- 7. In case of any difficulty/query contact block supervisor.
- 8. You have to write Date of Examination, Seat number, Program Scheme and Semester, Subject Name and Signature on Every Page
- 9. Remain in meet with your camera on and you in clear view throughout the duration of the exam

|    | the Caum.                     |  |
|----|-------------------------------|--|
| *  | Required                      |  |
| 1. | Email *                       |  |
| 2. | Enter your Name *             |  |
| 3. | Enter your Exam Seat Number * |  |
| 4. | Roll Number *                 |  |

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

## Questions

### Examination Second Half 2021 under cluster 06

## (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 22<sup>nd</sup> November2021 to 5<sup>th</sup> January 2022

Program: Electronics Engineering Curriculum Scheme: Rev 2019 Examination: TE Semester V

Course Code: ELC 504 and Course Name: Digital Communication

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
|-----------|-----------------------------------------------------------------------------------------------------------|
| 1.        | Name the major disadvantage of digital transmission of signals.                                           |
| Option A: | Increase in signal power                                                                                  |
| Option B: | Increase in signal bandwidth                                                                              |
| Option C: | Decrease in signal power                                                                                  |
| Option D: | Decrease in both signal power and bandwidth                                                               |
| 2.        | Which among these distributions is associated with discrete random variable?                              |
| Option A: | Gaussian distribution                                                                                     |
| Option B: | Raleigh distribution                                                                                      |
| Option C: | Binomial distribution                                                                                     |
| Option D: | Cauchy distribution                                                                                       |
| 3.        | Average rate at which information is transferred is called information rate and is given by               |
| Option A: | R = rH                                                                                                    |
| Option B: | R = r P                                                                                                   |
| Option C: | r = R H                                                                                                   |
| Option D: | R = r E                                                                                                   |
| 4.        | The channel capacity of a noiseless channel is equal to .                                                 |
| Option A: | Rate at which information is transmitted                                                                  |
| Option B: | Bandwidth                                                                                                 |
| Option C: | Rate at which information is received                                                                     |
| Option D: | Signaling speed                                                                                           |
| 5.        | For a line code, the transmission bandwidth must be                                                       |
| Option A: | Maximum possible                                                                                          |
| Option B: | As small as possible                                                                                      |
| Option C: | Depends on the signal                                                                                     |
| Option D: | Depends on the channel                                                                                    |
| 6.        | Which among these is said to be spectrally efficient modulation scheme?                                   |
| Option A: | BPSK                                                                                                      |
| Option B: | BFSK                                                                                                      |
| Option C: | QPSK                                                                                                      |
| Option D: | BASK                                                                                                      |

| 7.        | The maximum phase change in Offset QPSK(OQPSK) is                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| Option A: | 180°                                                                                                                    |
| Option B: | 45°                                                                                                                     |
| Option C: | 270°                                                                                                                    |
| Option D: | 90°                                                                                                                     |
| 8.        | For generating systematic Cyclic code $(n,k)$ , what should be the highest degree of the generator polynomial, $g(x)$ ? |
| Option A: | x <sup>n</sup>                                                                                                          |
| Option B: | x <sup>k</sup>                                                                                                          |
| Option C: | X <sup>(n-k)</sup>                                                                                                      |
| Option D: | x <sup>(a+k)</sup>                                                                                                      |
| 9.        | The minimum Hamming distance of linear Block code (8,4) is 4. The maximum number of bit errors detected by this code    |
| Option A: | 5                                                                                                                       |
| Option B: | 4                                                                                                                       |
| Option C: | 3                                                                                                                       |
| Option D: | 2                                                                                                                       |
| 10.       | Matched filter technique is used to                                                                                     |
| Option A: | Decrease Signal to Noise Ratio (SNR)                                                                                    |
| Option B: | SNR is not affected                                                                                                     |
| Option C: | Increase SNR                                                                                                            |
| Option D: | Transmit Signal                                                                                                         |

| Q2<br>(20<br>Marks) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A                   | Solve any Two 5 marks each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| i.                  | Explain the central limit theorem for random variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ii.                 | Explain the desirable properties of line codes. To transmit a bit sequence 1001 101, draw the waveforms using  1. Unipolar RZ 2.Unipolar NRZ 3.Biopolar RZ 4. AMI RZ 5. Manchester.                                                                                                                                                                                                                                                                                                                                                                     |  |
| iii.                | Compare BASK,BFSK and BPSK based on,  1. Bandwidth requirement 2. Error probability 3. Noise immunity 5. Applications                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| В                   | Solve any One 10 marks each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| i.                  | Draw and Explain the block diagram of BPSK transmitter. Sketch signal space diagram and PSD of BPSK.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ii.                 | The generator matrix for linear block code (7,4) is given below: $ \overrightarrow{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} $ (a) Compute the codeword for 1001,1010,1110. (b) When the received codeword is 1101011, find the syndrome. (c) Find the corrected codeword.                                                                                                                                                                    |  |
| Q3<br>(20<br>Marks) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| A                   | Solve any Two 5 marks each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| i.                  | For a random variable 'X', define the following terms and mention their important properties:  (a) Probability distribution function.  (b) Probability density function.                                                                                                                                                                                                                                                                                                                                                                                |  |
| ii.                 | A binary source produces 0's and 1's with probability P(0)=0.2 and P(1)=0.8. The binary data is then transmitted over a noisy channel. The probability of correct reception when a "0" is transmitted over the channel P(0/0)=0.9. Also the probability of reception of a "0" when a "1" has been transmitted is P (0/1) =0.2.  (a) Find the probability of reception of a "1" when a "0" is transmitted P(1/0) and the probability of reception of a "1" when a "1" is transmitted P(1/1).  (b) Find the overall probability of receiving "0" and "1". |  |
| iii.                | What is ISI? Explain how equalizer is helpful in overcoming the effect of ISI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| В                   | Solve any One 10 marks each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| i.                  | A discrete memory less source has five symbols $x_1$ , $x_2$ , $x_3$ , $x_4$ , and $x_5$ , with probabilities $p(x_1) = 0.4$ , $p(x_2) = 0.19$ , $p(x_3) = 0.16$ , $p(x_4) = 0.15$ , and $p(x_5) = 0.1$ . Construct the Shannon-Fano code and Huffman coding also calculate the code efficiency.                                                                                                                                                                                                                                                        |  |
| ii.                 | Design a Convolutional encoder with code rate $1/3$ and constraint length 3 and generating vectors as $g_1 = (1\ 1\ 1)$ , $g_2 = (1\ 0\ 0)$ , and $g_3 = (1\ 0\ 1)$ , Draw:  (a) The encoder.  (b) State diagram.                                                                                                                                                                                                                                                                                                                                       |  |

|           | (c) Trellis diagram.                                                                                                                                                                                                                                                                                                                                       |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | (d) Find the output data sequence for the input data sequence 01011.                                                                                                                                                                                                                                                                                       |  |
| Q4<br>(20 |                                                                                                                                                                                                                                                                                                                                                            |  |
| Marks)    |                                                                                                                                                                                                                                                                                                                                                            |  |
| A         | Solve any Two 5 marks each                                                                                                                                                                                                                                                                                                                                 |  |
| i.        | The channel capacity is given by C=B $\log_2(1+S/N)$ . In presence of white Gaussian noise with constant signal powerthe channel capacity reaches its upper limit with increase in bandwidth. Prove that this upper limit C is given by $C\infty=1.44$ (S/No).                                                                                             |  |
| ii.       | Differentiate between QPSK and OQPSK.                                                                                                                                                                                                                                                                                                                      |  |
| iii.      | Derive expression for the probability of error of the matched filter and justify that Pe does not depend on the shape of the input waveform.                                                                                                                                                                                                               |  |
| В         | Solve any One 10 marks each                                                                                                                                                                                                                                                                                                                                |  |
| i.        | Explain with the help of neat block diagram, the transmitter and receiver of M-ary FSK. What is the bandwidth requirement of M-ary FSK?                                                                                                                                                                                                                    |  |
| ii.       | <ul> <li>A binary massage sequence 1001 is coded using a generator polynomial G(x)= x³ + x² + 1</li> <li>Assuming a systematic cyclic code is used</li> <li>Determine: <ul> <li>(a) Find code word using feedback shift register.</li> <li>(b) Compute syndrome if the received code word is 0010110 using feedback shift register.</li> </ul> </li> </ul> |  |

| 5. | paper here. *                         |
|----|---------------------------------------|
|    | Files submitted:                      |
| 6. | Have you uploaded the correct file? * |
|    | Mark only one oval.                   |
|    | Yes                                   |
|    | No                                    |
|    |                                       |
|    |                                       |

## University of Mumbai Exam Second Half 2021\_Question

## Paper\_R2019/Electronics/Computer Organization Architecture/ELXDLOC 5014/ Sem-V

Dear Students,

- 1. This paper contains 20 Marks MCQ & 60 Marks subjective section for 2 hours 30 minutes duration.
- 2. Answers of the University Question Paper is to be written on A4 size paper including MCQ and it has to made into a single PDF file.
- 3. This is proctored examination, Kindly keep your camera on.
- 4. Use only your registered college email address (if applicable) to appear for examination.
- 5. Keep your hall ticket or college Id while appearing the examination.
- 6. Please keep a snapshot when your submission is complete.
- 7. In case of any difficulty/query contact block supervisor.
- 8. You have to write Date of Examination, Seat number, Program Scheme and Semester, Subject Name and Signature on Every Page
- 9. Remain in meet with your camera on and you in clear view throughout the duration of the exam.

| *  | * Required                    |   |  |  |  |
|----|-------------------------------|---|--|--|--|
| 1. | Email *                       |   |  |  |  |
|    |                               | _ |  |  |  |
|    |                               |   |  |  |  |
| 2. | Enter your Name *             |   |  |  |  |
|    |                               | _ |  |  |  |
| 3. | Enter your Exam Seat Number * |   |  |  |  |
|    |                               | _ |  |  |  |

#### 4. Roll No \*

The question paper will have MCQs (for 20 marks) and subjective/descriptive questions (for 60 marks)

### Questions

#### Examination Second Half 2021 under cluster 06

## (Lead College: Vidyavardhini's College of Engg Tech) Examinations Commencing from 22<sup>nd</sup> November2021 to 5<sup>th</sup> January 2022

Program: Electronics Engineering Curriculum Scheme: Rev2019 Examination: TE Semester V

Course Code: ELDO501 and Course Name: Computer Organization and Architecture

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
|-----------|-----------------------------------------------------------------------------------------------------------|
| 1.        | For special number Zero exponent and fraction in floating point notation should be                        |
| Option A: | E=0 & F=0                                                                                                 |
| Option B: | E=Non Zero & F=0                                                                                          |
| Option C: | E=0 & F=Non Zero                                                                                          |
| Option D: | E=Non zero & F= Non Zero                                                                                  |
| 2.        | Booth's algorithm for multiplication gives correct results for                                            |
| Option A: | Unsigned numbers only                                                                                     |
| Option B: | Signed numbers in sign magnitude form                                                                     |
| Option C: | Signed numbers in 1's complement form                                                                     |
| Option D: | Signed numbers in 2's complement form                                                                     |
| 3.        | RISC computers use which type of CU                                                                       |
| Option A: | Hardwired CU                                                                                              |
| Option B: | Horizontal Microprogrammed CU                                                                             |
| Option C: | Vertical Microprogrammed CU                                                                               |
| Option D: | Nano programmed CU                                                                                        |
| 4.        | Which type of control unit requires minimum control memory                                                |
| Option A: | Hardwired CU                                                                                              |
| Option B: | Horizontal Microprogrammed CU                                                                             |
| Option C: | Vertical Microprogrammed CU                                                                               |
| Option D: | Nano programmed CU                                                                                        |
| 5.        | Main memory is implemented using                                                                          |
| Option A: | DRAM                                                                                                      |
| Option B: | Flash ROM                                                                                                 |
| Option C: | SRAM                                                                                                      |
| Option D: | EPROM                                                                                                     |
| 6.        | The device that deals with the bus access control functions and bus handshake activities is               |
| Option A: | Bus allotment controller                                                                                  |
| Option B: | Bus arbiter                                                                                               |
| Option C: | Priority resolver                                                                                         |
| Option D: | Primary resolver                                                                                          |

| 7.        | What is the correct definition of the term 'SIMD'?                  |  |
|-----------|---------------------------------------------------------------------|--|
| Option A: | Single Input, Multiple Destinations                                 |  |
| Option B: | Single Integration, Multiple Dynamics                               |  |
| Option C: | Single Instruction, Multiple Data                                   |  |
| Option D: | Single Interrupt, Multiple Distribution                             |  |
| 8.        | In instruction pipelining, Read After Write hazard is also known as |  |
| Option A: | False dependency                                                    |  |
| Option B: | Anti dependency                                                     |  |
| Option C: | True dependency                                                     |  |
| Option D: | Output dependency                                                   |  |
| 9.        | Throughput of a super scalar processor is                           |  |
| Option A: | Less than 1                                                         |  |
| Option B: | More than 1                                                         |  |
| Option C: | Equal to 1                                                          |  |
| Option D: | Zero                                                                |  |
| 10.       | The set of loosely connected computers are called as                |  |
| Option A: | Clusters                                                            |  |
| Option B: | LAN                                                                 |  |
| Option C: | WAN                                                                 |  |
| Option D: | Workstation                                                         |  |

| Q2 | Solve any Two Questions out of Three                                                                                                                                                                              | (10 marks each)         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| A  | Consider a hypothetical Control Unit which supports 4k words 64 control signals and 16 Flags. What is the size of control womemory in bytes using:  a) Horizontal Micro Programming b) Vertical Micro Programming |                         |
| В  | Explain Flynn's classification of computers with block diagram                                                                                                                                                    | 1                       |
| С  | Consider a cache memory of 16 bytes, main memory size of 4 bytes. For 2-way set associative mapping, find out Number address, Number of TAG bits, Number of bits for Line offset, I number.                       | of bits in the physical |

| Q3 | Solve any Two Questions out of Three                                                         | (10 marks each)          |
|----|----------------------------------------------------------------------------------------------|--------------------------|
| A  | What is Vertical Micro-programmed control unit give its ad<br>Micro-programmed control unit. | vantages over Horizontal |
| В  | What are the hazards in pipeline? Suggest the solutions to<br>hazards.                       | eliminate the pipeline   |
| С  | Explain the different ways of achieving the instruction level                                | l parallelism.           |

| Q4 | Solve any Four out of Six                                  | (5 marks each) |
|----|------------------------------------------------------------|----------------|
| A  | Draw and explain fundamental units of a computer system    |                |
| В  | Divide 11 by 3 using restoring division algorithm method   |                |
| C  | Explain booth's algorithm with flowchart                   |                |
| D  | Explain what is 'Bus Arbitration'?                         |                |
| Е  | Differentiate between I/O mapped I/O and memory mapped I/O |                |
| F  | Write a short note on super scalar architecture?           |                |

| 5. | Upload your Answer Sheet including MCQ and subjective part of the question paper here. * |
|----|------------------------------------------------------------------------------------------|
|    | Files submitted:                                                                         |
| 6. | Have you uploaded the correct file? *                                                    |
|    | Mark only one oval.                                                                      |
|    | Yes                                                                                      |
|    | No                                                                                       |
|    |                                                                                          |
|    |                                                                                          |