SE Sem- IV (COMP/AIDS/CYSE) MP University of Mumbai QP: 93977

Examination Summer 2022

Time: 2 hour 30 minutes Max. Marks: 80 Makes above the policy space of the states above the companies of the states above being the space of the states above the st

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1,	8086 supports software Interrupts	
Option A:	2	
Option B:	64K	
Option C:	256	
Option D:	8	
2.	In 8086 size of pre fetch queue is	
Option A:	6 Byte	
Option B:	4 Byte	
Option C:	4 Bit	
Option D:	2 Byte	
· · · · · · · · · · · · · · · · · · ·		
3.	The instruction that unconditionally transfers the control of execution to the specified address is	
Option A:	JMP	
Option B:	IRET	
Option C:	RET	
Option D:	CALL	
4.	In PUSH instruction, after each execution of the instruction, the stack pointer is	
Option A:	incremented by 1	
Option B:	decremented by 1	
Option C:	incremented by 2	
Option D:	decremented by 2	
5.	stores the bits required to mask the IR lines of 8259	
Option A:	ISR	
Option B:	IMR	
Option C:	IRR	
Option D:	PR	
6.	The bus is available when the DMA controller receives the signal	
Option A:	HRQ	
Option B:	HLDA	
Option C:	DACK	
Option D:	INTA	
1		
7.	Which control registers of 80386 are associated with paging mechanism?	
Option A:	CRO, CR2, CR3	
Option B:	CR1, CR2, CR3	
Option C:	CRO, CR1 CR2	

Option D:	CRO, CR1 CR2,CR3
8.	How many flags are active in flag register of 80386?
Option A:	9
Option B:	12
Option C:	13
Option D:	10
9.	What lead to the development of MESI and MEI protocol?
Option A:	Cache size
Option B:	Cache Coherency
Option C:	Bus snooping
Option D:	Number of caches
10.	Hyperthreading uses the concept of
Option A:	Simultaneous multithreading
Option B:	Distributed decoding
Option C:	Multiple switching
Option D:	Pipelining

Q2	Solve any Two Questions out of Three 10 marks each
A	Explain and draw IVT? Differentiate between hardware and software interrupts?
. B	Explain descriptors and paging mechanism in protected mode of 80386?
С	Explain the Initialization command words (ICWs) and Operational command words(OCWs) of the 8259 PIC.

Q3	Solve any Two Questions out of Three 10	marks each
Α	Write an 8086 assembly language program to print the fla	g registers
В	Design 8086 microprocessor based system working in min with the following specifications. I) 8086 microprocessor working at 8 MHz. II) 16 KB EPROM using 8K devices. Clearly show memory map with address range. Draw a new	
С	Explain protection mechanism of 80386 with diagram.	

Q3	Solve any Two Questions out of Three 10 marks each
	Book (book_id, title, author, cost) Store (store_no, city, state, inventory_val) Stock (store_no, book_id, quantity)
A	Consider above relational schema and formulate SQL queries for the following:
	(i)Modify the cost of DBMS books by 10% (ii)Find the author of the books which are available in Mumbai store (iii)Find the title of the most expensive book
(iv)Find the total quantity of books in each store (v) Add a new record in Book	
В	(Assume values as per requirement) Why there is need of normalization? Explain 1NF,2NF,3NF and BCNF with examples.
	Design an EER schema for a BANK database. Each bank can have multiple branches, and each branch can have multiple accounts
C	and loans. Bank keeps the track of different types of Accounts (Saving_aacount, Checking_account), Loans (Car_loans, Home_loans,), each account's Transaction (deposit, withdrawal, check,) and each loan's Payments; both of these include the
	amount, date and time. State any assumptions you make about the additional requirement clearly.

1	Q4	Solve any Two Questions out of Three 10 marks each	
	A	What is Deadlock and explain deadlock handling in DBMS with Example.	j

	A schedule has transactions T1, T2, T3 has given below:			
	Ti	Т2	(1)	T3
	READ(X)			
		READ(Z)		
	READ(Z)			
				READ(X)
				READ(Y)
	WRITE(X)		- 1971	
	11 25.4.4 20.7			WRITE(Y)
В		READ(Y)		
		WRITE(Z)		
		WRITE(Y)		
	a) What is conflic	t and view scrializability?		
	b) Draw a Precede	ence graph?		
	c) Is schedule con	flict serializable or not?		
		serial schedule?		
С	Describe ACID prope	rties with examples and draw	w state ti	ransition diagram of

MP QP: 93977

Q4	Solve any Two Questions out of Three	10 marks each
۸	Draw and explain timing diagram of memo	ory read and memory
B Explain Pentium 4 Net burst micro architecture and write a hyperthreading		and write a note on
С	Explain Integer and Floating-Point Pipeline of Pentic	um.

Dt. 20/05/

University of Mumbai Examinations Summer 2022

Time: 2 hour 30 minutes

CYSE

Max. Marks: 80

Q1. (20 Marks)	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	is the class of decision problems that can be solved by non-deterministic polynomial algorithms.	
Option A:	NP	
Option B: P		
Option C:	Hard	
Option D:	Complete	
······································		
2.	Following data structure is used to implement LIFO Branch and Bound Strategy	
Option A:	Priority Queue	
Option B:	array	
Option C:	stack	
Option D:	Linked list	
3.	For the given elements 6 4 11 17 2 24 14 using quick sort, what is the sequence after first phase, assuming the pivot as the first element?	
Option A:	2 4 6 17 11 24 14	
Option B:	2 4 6 11 17 14 24	
Option C:	4 2 6 17 11 24 14	
Option D:	2 4 6 11 17 24 14	
- 4.	Which of the following is correct for branch and bound technique?	
	THE DEC	
	i. It is BFS generation of problem states	
	ii. It is DFS generation of problem states	
	iji. It is D-search.	
3 3 3 3 3 3		
Option A:	Only i	
Option B:	Only ii	
Option C:	Only ii and iii	
Option D:	Only i, and iii	
5.	Consider the given graph.	

	7 7 7 7 7 7 10
	What is the weight of the minimum spanning tree using the Kruskal's algorithm?
Option A:	24
Option B:	23
Option C:	15
Option D:	19
6.	Bellman Ford algorithm is used to find out single source shortest path for negative edge weights. Bellman Ford algorithm uses which of the following strategy?
Option A:	Greedy method
Option B:	Dynamic Programming
Option C:	Backtracking
Option D:	Divide and Conquer
7.	The optimal solution for 4-queen problem is
Option A:	(2,3,1,4)
Option B:	(1,3,2,4)
Option C:	(3,1,2,4)
Option D:	(2,4,1,3)
8.	Consider the following code snippet:
	Bounding function(k,i) {
	for(j=1 to k-1)
	$\{ if ((x[j]=i) \text{ or } (Abs(x[j]-i) == abs(j-k))) \text{ return false};$
	} return true }
	The above code represents the bounding function for which of the following algorithm?
Option A:	Subset sum problem using backtracking
Option B:	n-queens using backtracking
Option C:	Graph coloring using backtracking
Option D:	Subset sum using branch and bound
9.	What do you mean by chromatic number? The minimum number of colors needed to color all the vertices optimally in a Graph
Option A:	The minimum number of colors needed to color an the vertices opinion

	Coloring problem	
Option B:	The maximum number of colors needed to color all the	vertices optimally in a Graph
	Coloring problem	
Option C:	The number of colors using which the edges of graph	have been colored in a Graph
	Coloring Problem	
Option D:	The individual colors with which we color the vertices of	of a Graph in a Graph Coloring
	Problem	
10.	Which string matching algorithm uses a Prefix Table?	
Option A:	Naïve String Matching Algorithm	
Option B:	Boyer Moore String Matching Algorithm	
Option C:	Knuth Morris Pratt Algorithm	
Option D:	Rabin Karp Algorithm	

Q2. (20 Marks)	Solve any Four out of Six 05 marks each
A	Write and Explain binary search algorithm.
В	Write a short note on job sequencing with deadline
	Determine the LCS of the following sequences:
С	X: {A, B, C, B, D, A, B} Y: {B, D, C, A, B, A}
D	Solve the sum of subsets problem for the following: n=4, m=15, w={3,5,6,7}
Е	Give the algorithm for the N-Queen's problem and give any two solutions to the 8-Queen's problem
F	Explain and apply Naïve string matching on following strings String1: COMPANION
	String2: PANI

Q3. (20 Marks)	Solve any Two Questions out of Three	10 marks each
A	Write algorithm for greedy knapsack and Obtain th knapsack problem where $n=7, m=15$ (p1,p2p7) (w1,w2,,w7) = (2,3,5,7,1,4,1).	= (10,5,15,7,6,18,3),
В	Explain Dijkstra's Single source shortest path algit is different from Bellman Ford algorithm. Explausing LC search technique.	gorithm. Explain how iin 15-puzzle problem
C	Rewrite and Compare Rabin Karp and Knuth Mo Give the pseudo code for the KMP String Matching Al	orris Pratt Algorithms gorithm.

Q4.	Solve any Two Questions out of Three 10 marks eac	h
(20 Marks)		
Α	Write algorithm for quick sort and sort the following element [40,11,4,72,17,2,49]	ts
В	Write multistage graph algorithm and solve following example.	

	V ₁ V ₂ V ₃ V ₄	∨ 8
	9 1 2 3 6 9 4	
	7 3 3	>
	3 4 11 5 5	
	2 11 6 0	
	6	
	Write algorithm for 0/1 knapsack problem using	g dynamic
C	brogramming. Also solve the following exami	ole.
~	N=4, M=21 (p1,p2,p3,p4)=(2,5,8,1),(w1,w2	,w3,w4)~(10,13,0,7)

University of Mumbai

Examination First Half 2022 under cluster __ (Lead College:

Examinations Commencing from 16 MAY 2022 to 30 MAY 2022

Program: BE COMPUTER ENGINEERING

Curriculum Scheme: Rev2019 (C scheme)
Examination: SE Semester IV

Course Code: CSC 401 and Course Name: Engineering Mathematics IV

Time: 2 hour 30 minutes Max, Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	If X is a Poisson variate and $P(X=1)=P(X=2)$, then $E(X^2)$ is
Option A:	
Option B:	
Option C:	8
Option D:	
2.	If $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$ Eigen value of Adj. A are:
Option A:	5,6,2
Option B:	2,3,6
Option C:	5,3,6
Option D:	1,3,6
3.	If $f(z) = \frac{3z^2+z}{z^2-1}$, then residue of $f(z)$ at $z=-1$ is
Option A:	1477555555555555555
Option B	
Option C:	$oldsymbol{2}$
Option D;	-2 - N. S.
\$1.5 E. S.	
	The value of $\int_{\mathcal{C}} \frac{\cos \pi z}{z^{2}+1} dz$ where C is the circle $ z = 1/2$
Option A.	
Option B;	2n
Option C:	19 1 (2) (2) (2) (3) (3) (4) (4) (5) (5) (5)
Option D	$_{2}\pi$
10/2/2018	<u> </u>
\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	According to Time shifting property of z-transform, if X(z) is the z-transform of x(n-k)?
Option A:	2 X(2) 8 6 8 6 8
Option B: 4	z ^k X(z)
Option C:	X(z+k)
Option D:	X(2,k)
300 300	
	The value of $Z^{-1}\left[\frac{z^2}{(z-a)(z-b)}\right]$ is
Option A:	$a^{n+1}-b^{n+1}$
(K. S. 18) (G. 18)	$\frac{a+b}{a+b}$

Option B:	$a^{n+1}+b^{n+1}$
_	${a-b}$
Option C:	
-	$a^{n+1}-b^{n+1}$
	a-b
Option D:	$\frac{a-b}{a^{n+1}+b^{n+1}}$
·····	$\frac{a+b}{a+b}$
7.	If a random variable X follows Poisson distribution such that P(X=0)=6P(X=3), find
	the mean and variance of the distribution.
Option A:	mean = 1, variance = 1
Option B:	mean = 1, variance = -1
Option C:	mean = 1, variance = 2
Option D:	mean = 1, variance = -2
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8.	In normal distribution
Option A:	Mean = Median = Mode
Option B:	Mean < Median < Mode
Option C:	Mean> Median > Mode
Option D:	Mean ≠ Median ≠ Mode ೧೭೭೬ ೧೭೭೬ ೧೭೭೭ ೧೯೭೭ ೧೯೭೭ ೧೯೭೭ ೧೯೭೭ ೧೯೭೭
9.	If the primal LPP has an unbounded solution then the dual has
Option A:	Unbounded solution was a second secon
Option B:	Bounded solution
Option C:	Feasible solution
Option D:	Infeasible solution
10.	The value of Lagrange's multiplier A for the following NLPP is
	Optimize $z = 6x_1^2 + 5x_2^2$
اي	
- \$\hat{x}	Subject to $x_1 + 5x_2 = 7$
	$\left \left\langle \left$
Option A:	A = 3 1/84
	A = 84/31
	313/74 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
142 1	À, =31/64

	\$ \$ \$ \$ \$ \$ \$ \$ \$			*****	~~~~~~		,		
)	Solve any	Four or	ut of Siz	K '				5 mar	ks each
A	Given A	l-1	1 -2	0.1	id the ϵ	-			lso fin
B	Evaluate J		-iv)dz	alone t	he nath	(i) x^2 :	= v (ii)	41 .	
Kara a Cara a Kan	Find $Z\{2^k$				no paux	(1) 12	<i>y</i> (**/	, , ,	·····
\$.D . \$ \$ \$ \$	The follow week. Find	ing tabl	e gives	the nun	nber of a	cciden	ts in a c	ity duri	ng a r a wee
	Day	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total
	889E421	46FA 7C7	81BE5D1	31562sp				2	Pag

	No. of accidents	13	15	9	11	12	10	14	84 %
Е	Solve by Sin Maximise Subject to	$z = -x_1$	$Method = 7x_1 + 2x_2 + 3x_2$	$+5x_2 \ge -6$					
		<i>x</i> ₁	$,x_2\geq 0$	0					
	Solve the fo			~ 7	、. 「 ₍ (い)) ラ 含 (
F	Maximise Subject		$z = -2x_1 +$		x_2 + $x_2 \ge 0$	10x1 +	4x ₂		
		3							

Q3	Solve any Four out of Six	5 marks each
A	Find the Eigen values and Eigen Vectors of the follow $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$	
В	Evaluate $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where C is the circle z	zl = 3
C	Obtain inverse z-transform $\frac{z+2}{z^2-2z-3}$, $1 < z < 3$	·
D	The height of six randomly chosen sailors are in inche 63,65,68,69,71,72. The height of 10 randomly chosen 61,62,65,66,69,69,70,71,72 and 73.	s: soldiers are:
	Solve by the dual Simplex Method Minimise $z = 6x_1 + 3x_2 + 4x_3$ Subject to $x_1 + 6x_2 + x_3 = 10$ $2x_1 + 3x_2 + x_3 = 15$ $x_1, x_2 \ge 0$	
	Find the relative maximum or minimum of the function $z = (x_1)^2 + x_2^2 + x_3^2 - 8x_1 - 10x_2 - 12x_1 + x_2^2 + x_3^2 - 8x_1 - 10x_2 - 12x_2 + x_3^2 - 8x_1 - x_1^2 - x_$	on C ₃ + 100

	$x_1, x_2 \geq 0$
	Find the relative maximum or minimum of the function $z = x_1^2 + x_2^2 + x_3^2 - 8x_1 - 10x_2 - 12x_3 + 100$
	Solve any Four out of Six 5 marks each
	Show that the following matrix is diagonalizable. Also find the diagonal form and a diagonalizing matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$
B	Evaluate $\int_C \frac{4z^2+1}{(2z-3)(z+1)^2} dz$, $C: z = 4$ using Cauchy's residue theorem.
	Find the inverse z-transforms of $F(z) = \frac{z}{(z-1)(z-2)}; z > 2$
	3 Page
	889E42146FA7C781BE5DB15625B436DF

	11 11 11 11 11 11 11 11 11 11 11 11 11
	If the heights of 500 students is normally distributed with mean 68
a	inches and standard deviation 4 inches, estimate the number of students
	inches and standard deviation 7 inches,
	having heights (i) greater than 72 inches
1	
	(ii) less than 62 inches (iii) between 65 and 71 inches
	Using Simplex method
	Maximize $z = 10x_1 + 6x_2 + 5x_3$
	Subject to $2x_1 + 2x_2 + 6x_3 \le 300$
E	$10x_1 + 4x_2 + 5x_3 \le 600$
	$x_1 + x_2 + x_3 \le 100$
	$x_1, x_2, x_3 \geq 0$
	Using Lagrange's multiplier
	optimize $z = 4x_1 + 6x_2 - 2x_1^2 + 2x_1x_2 - 2x_2^2$
F	opumize z - TA1 VAN TANTA SA STATE
*	subject to $x_1 + 2x_2 \neq 2$
	$x_1, x_2 \ge 0$

Sport C.Y.

University of Mumbai

Examinations Summer 2022

Program: Computer Engineering

Curriculum Scheme: CBGS / R-19 (C-scheme)

Program No.: 1T00734

Name of the Examination: SE Sem - IV

Subject paper Code: 40524

Course Name: Operating System

SP code - 93542

Time: 3 hours

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	When a computational speed and resource sharing is required and implemented through various full computer systems in a network, what OS should be chosen?
Option A:	Real-time OS
Option B:	Distributed OS
Option C:	Embedded OS
Option D:	Batch OS
2.	Core of operating system is
Option A:	Shell
Option B:	Kernel
Option C:	Commands
Option D:	Script
. e . s	
3.	Which of the following state transitions is not possible?
Option A	Blocked to running
Option B:	Ready to running
Option C:	Running to blocked
Option D.	Blocked to ready
F37 763	
3 8 47 5 8	Degree of multiprogramming is characteristic of
Option A:	Long Term Scheduler
Option B:	Short Term Scheduler
Option C:	Medium Term Scheduler
Option D:	Dispatcher (%)
2020	3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5.	The situation where more than one processes access and update the same data concurrently and the result depends on the sequence of execution in which it takes place is known as
Option A:	Critical section

Option B:	Deadlock
Option C:	Non-critical section
Option D:	Race condition
6.	
	Which algorithm requires that the system must have some additional a priori
	information available about resources?
Option A:	Deadlock prevention
Option B:	
Option B:	Deadlock recovery
Option C:	Deadlock avoidance
Option D:	Deadlock allocation
7,	Which Page replacement algorithm suffers from Belady's Anomaly?
Option A:	LRU
Option B:	FIFO
Option C:	Optimal
Option D:	None of the Above
8.	Which technique is used to overcome external fragmentation when Dynamic
0 41 4	Partitioning is used during the process to memory allocation?
Option A:	Polling
Option B:	Page fault
Option C:	Context switch
Option D:	Compaction
9.	William Inner Clark Inner
1	Which one is not a file attributes?
Option A:	Time, date, and user identification
Option B:	Name
Option C:	Truncate
Option D:	Protection or Permission
10	
10,	In algorithm, the disk head moves from one end to the other,
	servicing requests along the way, when the head reaches the other end, it
	immediately returns to the beginning of the disk without servicing any requests
	on the return trip.
	28 × 30 × 10 × 10 × 20 × 10 × 10 × 10 × 10 × 1
Option A:	LOOK
Option B:	C-LOOK
Option C:	C-SCAN
Option D;	SCAN

	Q2.	Solve any Four out of Six 5 marks each
·,	\mathbf{A}	Describe microkernel operating system structure.
	, D	What is the need of thread? Describe any four advantages of multithreading
		model.
	C	How to solve busy waiting problem?

			4.		·		
	D	What is the producer consumer problem? Provide soluti	on to	produce	er .	شيسته	7
		consumer problem using semaphores.	. 14		NO ON Property		
	E	Give details of file organization types	-		***************************************		1
i	F	Give details of IO Buffering techniques.					1
					1276	. /	ı

Q3.	Solve any	Two Questi	ons out of Thr	ee	10 marks each
	Consider t	he following se	et of processes,		
	Process	Burst Time	Arrival Time	Priority	
	P1	0	4	2(L)	
	P2	1	2	4	
	P3	2	3	6	
	P4	3	5	10	
A	P5	4	1	8	
	P6	5.	4	12 (H)	
	P7	6	6	9	
	Note Highe	er number is he	aving higher pri	ority.	
	2. Calculat response tin	e average wai ne for this sche	ting time, aver- duling algorithm	age turnaround is.	Preemptive Priority
В	Suggest tech	iniques to avoi	d deadlock.		ditions of deadlock.
C	processes of Which algo	r), now would P1-212 KB, F	the first-fit, bes 2-417 KB, P3-1 ne most efficien	t-fit and worst-: 12 KB and P4-	fit algorithms place 426 KB (in order)? bry? Use fixed size

Q4.		
Α	Solve any Two	5 marks each
i i	Draw and Explain five state process model.	
ii, Y	Explain with the help of a diagram, how the system ca	ll will be generated?
2003 / iii. 🗀 👉 🕾	Explain the effect of page size on performance.	27 TOTAL OF BOILDIALOGY
В	Solve any One	10 marks each
er er i,	Describe Disk Scheduling algorithms with example	
ii.	Explain File Allocation methods in detail.	

University of Mumbai

Examinations Summer 2022

S.E. (Computer Engineering) (SEM-IV) (Choice Base Credit Grading System) (R-19) (C Scheme)
Subject: Database Management System

Time: 2 hour 30 minutes

Max. Marks; 80

	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks 3 8 8 6 6 7 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8
1.	The capacity to alter the database schema at one level without affecting any other levels is
	termed as
Option A:	Data Independence
Option B:	Data Mapping
Option C:	Data Isolation
Option D:	Data Transformation
2.	An attribute (say A) of entity set is calculated from other attribute value (say B). The attribute A is called
Option A:	Single valued
Option B:	Multi valued
Option C:	Composite
Option D:	Derived
3.	Consider the following relations:
	Parts (pid,pname,color)
	PartCost (pid,cost)
	What does the following relational algebra expression represent?
	What does the following relational algebra expression represent.
į.	Π _{pid} ((σ _{color='red'} (Parts)) ⋈ (σ _{cost≥1000} (PartCost)))
Option A	Find the pid of all parts whose color is red.
Option B:	Find the pid of all parts whose color is red or cost ≥ 1000.
Option C.	Find the pid of all parts whose color is red but not cost ≥ 1000
Option D:	Find the pid of all parts whose color is red and cost ≥ 1000.
Option D.	Find the pld of air paids whose cozer is re-
20 20	Let E1 and E2 be two entities in an E-R diagram with one multi-valued attribute in E1, R1 an
4.	R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many to-many, R1 and R2 do not have any attributes of their own, What is the minimum number of tables required to represent this situation in the relational model.
Option A:	2 3 3 3 3 3 3 3 3 4 3 4 3 3 3 3 3
Option B:	4
Option C:	3
Option D:	· 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
25 / AC	
5. 5. A	Consider the instructor table:
	INSTRUCTOR (instr. id. name, dept name, salary).
	insert a new instructor 'I-101', named 'PMJ', with 50,000 salary for department
24.4	COMP'. Identify the appropriate SQL statement.
Option A:	INSERT INTO TABLE INSTRUCTOR VALUES ('I-101', 'PMJ', 'COMP', 10,00,000)
	THOSERT INTO INSTRUCTION (1.404 PM P.COMP. 50.000)
Option B:	INSERT INTO INSTRUCTOR ('I-101','PMJ','COMP', 50,000) INSERT INTO INSTRUCTOR VALUES ('I-101', 'PMJ', 'COMP', 50,000)
Option C:	MARKI INTO INSTRUCTOR VALUES (1-101, 1 Mb, 00M, 103,000)

Option D:	INSERT INTO TABLE INSTRUCTOR table instr_id, name, dept_name, salary) VALUES ('1-101', 'PMJ', 'COMP', 50,000)
	D. CD. C. P.
6.	Let R= (A, B, C, D, E, F) be a relation with the following dependencies: B->CE, C->F, EC->D, A->B. Which of the following is a candidate key for R
Option A:	C
Option B:	E
Option C:	A
Option D:	В
* Clarich Congression of the Congression of the Section of the	
7.	Identify the incorrect statement.
Option A:	3NF doesn't have transitive dependencies
Option B:	Composite attributes are not allowed in 1NF
Option C:	In 2NF, there should not be any Full functional dependencies
Option D:	In BCNF, trivial FD are allowed
4	
8.	If T1, T2 are two transactions and I1, I2 are two instructions of T1 and T2 respectively
	then I1 and I2 are conflicting instructions if
Option A:	They operate on the different data item
Option B:	They belong to different transactions
Option C:	At Least one of them is a write operation
Option D:	At Least one of them is a read operation
1	
9.	Choose the correct option
Option A:	Every Conflict serializable schedule is also View serializable
Option B:	Every View serializable schedule is also conflict serializable
Option C:	Both a and b
Option D:	Every serial schedule has same conflict and view equivalent schedule
Option D.	Typery serial selecture has same conflict and view equivalence
10.	When a transaction is aborted due to ant kind of failure, which instruction should be
10.	When a transaction is aborted tide to air kind or fundio, which have been appropriately state.
	executed to keep database in consistent state
Option A:	Commit
Option B.	Konback
Option C:	Savepoint
Option D:	Checkpoint

		Solve any Two Questions out of Three 10 marks each
		Short note on Data Independence. Define DBA Discuss roll and responsibilities of
	A	DBA
`	В	Convert following E-R diagram to relational schema and equivalent schema diagram