University of Mumbai

Program: **Cyber Security** Curriculum Scheme: Rev2019

Examination: SE Semester :III

Course Code: CSC303

Course Name: Data Structure

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Topological sort can be implemented on a?
Option A:	Linked list
Option B:	Binary tree
Option C:	Directed acyclic graph
Option D:	Directed cyclic graph
2.	Postfix expression corresponding to the infix expression " $(1+4)/(8-6)$ * 3" is
Option A:	14/86*3-
Option B:	14 / 8 6 *- 3 +
Option C:	14+86/-*3
Option D:	14+86-/3*
3.	Which of the following trait of a hash function is most desirable?
Option A:	It should be easy to implement
Option B:	It should occupy less space
Option C:	It should cause less collisions
Option D:	It should cause more collisions
4.	Which of the following statement is not true about the doubly linked list?
Option A:	We can traverse in both the directions.
Option B:	It requires extra space
Option C:	Implementation of doubly linked list is easier than the singly linked list
Option D:	It stores the addresses of the next and the previous node
5.	B+ tree can contain a maximum of 7 pointers in a node. What is the minimum
	number of keys in leaves?
Option A:	3
Option B:	4
Option C:	5
Option D:	6
6.	Assume a binary search tree created by inserting the values 27, 9, 23, 22, 29, 25,
	15, 50, 95, 60, 40. Number of nodes in the right subtree will be
Option A:	4
Option B:	5
Option C:	6

Option D:	7
7.	Which of the following is essential for evaluating a postfix expression?
Option A:	An operator stack
Option B:	An operand stack
Option C:	An operator stack and an operand stack
Option D:	A parse tree
8.	Stacks cannot be used to
Option A:	evaluate an arithmetic expression in postfix form
Option B:	implement recursion
Option C:	convert a given arithmetic expression in infix form to is equivalent postfix form
Option D:	allocates resources (like CPU) by the operating system
9.	Queue data structure is used for -
Option A:	Preorder traversal in tree
Option B:	Postorder traversal in tree
Option C:	Depth first traversal in graph
Option D:	Breadth first traversal in graph
10.	The operation of processing each element in the list is known as
Option A:	Creation
Option B:	Insertion
Option C:	Deletion
Option D:	Traversal

Q2	Solve any Two Questions out of Three	10 marks each
А	 Write a C program for Singly Linked list for p operations i. Create SLL ii. Display SLL iii. Delete last node from SLL iv. Insert a node at start of SLL 	performing following
В	Draw the B-tree of order 4 created by insertin in sequence: 25,10,16,32,20,5,27,39,7,11.	g the following data arriving
С	Define recursion. Differentiate between iterat program to check whether a string is palindro stack data structure.	ion and recursion. Write a C me or not, with the help of

Q3.	Solve any Four Questions out of Six5 marks each
А	Define ADT. Write ADT for stack.
В	Consider a hash table with size = 7. Using Linear probing, insert the keys 99,33,23, 44, 56,43,19 into the table
С	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.
D	Write a C functions to implement insertion and deletion in queue using linked list
E	Explain deletion of a node in a binary search tree

	Create a Binary Search Tree for the following sequence and write all the 3
F	traversal sequences from resultant BST:
	45,39,56,12,34,78,32,10,89,54,67,81.

Q4.	
А	Solve any Two 5 marks each
i.	Define circular queue. Assume a circular queue with a capacity 6, currently having the elements 50 and 70 at locations 2 and 3 respectively. Show with example, the queue full and queue empty conditions by performing necessary operations on circular queue.
ii.	An array contains the elements – 8,13,17,26,44,56,88,97. Using binary search algorithm, trace the steps followed to find numbers 56 & 9 . At each step, show the contents of low, high & mid and array after each iteration
iii.	Create a Binary Search Tree for the following sequence and write all the 3 traversal sequences from resultant BST: 45,39,56,12,34,78,32,10,89,54,67,81.
В	Solve any One 10 marks each
i.	Create a AVL tree for the sequence: I, N, F, O, R, M, A, T, G. Consider the characters to arrange in alphabetic sequence. Show the tree after each insertion with balance factors.
ii.	Write an algorithm/pseudocode to convert a given infix expression to postfix expression? Trace the steps involved in converting the given infix expression $((A + B)^{C})-((D^{*}C)/F)$ to postfix expression