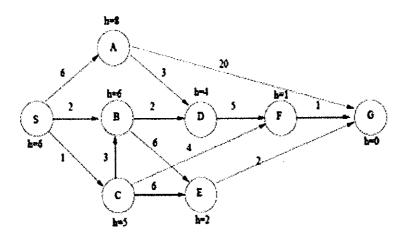
Sem VII Comp ((BGS)

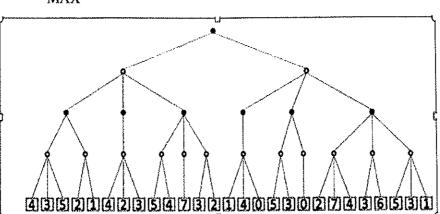

Q. P. Code: 811600

(3 Hours)

Total Marks: 80

N.B. 1. Question No. 1 is compulsory

- 2. Attempt any three (3) out of remaining five (5) questions
- 3. Assume suitable data if necessary and justify the assumptions
- 4. Figures to the right indicate full marks
- Q1 Attempt an four (4) from the following
 - [A] Define AI. What are applications of AI? [05]
 - [B] Define heuristic function. Give an example heuristics function for 8-puzzle problem. Find the heuristics value for a particular state of the Blocks World Problem.
 - [C] Compare Model based Agent with Utility based Agent. [05]
 - [D] What are the problems/frustrations that occur in hill climbing technique? Illustrate with an example [05]
 - [E] What is supervised learning and unsupervised learning? Give example [05] of each.
- Q2 [A] Consider the search problem below with start state S and goal state G. The transition costs are next to the edges and the heuristic values are next to the states. What is the final cost using A * search.


- [B] Explain the architecture of Expert System. What are advantages and limitations of Expert System? [10]
- Q3 [A] Explain with example various uninformed search techniques. [10]
 - [B] Illustrate Forward chaining and backward chaining in propositional logic with [10] example

[TURN OVER]

2

Q. P. Code: 811600

Q4 [A] Apply alpha-Beta pruning on following example considering first node as MAX

[B] Explain a partial order planner with an example.

[10]

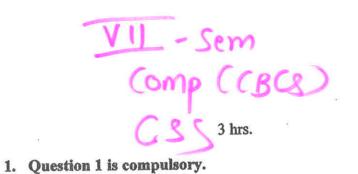
[10]

Q5 [A] Consider the following facts about dolphins:

[10]

Whoever can read is literate. Dolphins are not literate. Some dolphins are intelligent.

- (i) Represent the above sentences in first order predicate logic (FOPL).
- (ii) Convert them to clause form
- (iii)Prove that "Some who are Intelligent cannot read" using resolution technique
- [B] What is Uncertainty? Explain Bayesian Network with example


[10]

Q6 Write short note on any two of the following:

[20]

- (i) Steps in Natural Language Processing
- (ii) Decision Tree Algorithm with an example
- (iv) Genetic Algorithms

7879AB9848BCA74B209B152B506B1CB8

Note:

80 marks

71000	 Attempt any 3 questions out of the rest. Make suitable assumptions whenever necessary and justify them Each question carries equal marks. 	
Q1. a) Use t	he Play fair cipher with the keyword: "MEDICINE" to encipher	(5)
b) Expla	nessage "The greatest wealth is health". nin key rings in PGP. ny define idea behind RSA and also explain	(5) (10)
1) 2) 3) 4)	What is the one way function in this system? What is the trap door in this? Give Public key and Private Key. Describe security in this system.	3
b) Consi non- 1) S	in DES, detailing the Feistel structure and S-block design der a Voter data management system in E-voting system with sensitive and sensitive attributes. Show with sample queries how attacks (Direct, Inference) are possible on such data sets Suggest 2 different ways to mitigate the problem.	(10) (10)
Also b) Wha	lain Diffie-Hellman Key exchange algorithm with suitable example. explain the problem of MIM attack in it are Denial of Service attacks? Explain any three types of DOS eks in detail	(10) (10)
Q 4) a) IPSe	ec offers security at n/w layer. What is the need of SSL?	(10)
b) Wha	lain the services of SSL protocol? at are the types of firewalls? How are firewalls different from IDS	(10)
Exp	t are the various ways in which public key distribution is implemented.	(10)
b) Why	rtificate authority. y are Digital Signatures & Digital certificates required? What is the significance Dual Signature.	(10)
Q6 Atte	empt any 4	(20)
a)b)c)d)f)	SHA-1 Timing and Storage Covert Channel Session Hijacking and Spoofing Blowfish S/MIME	

Brown Committee South Committee Comm

.

MIT (Rev) Comp

15/5/17

O. P. Code: 621502

Maximum marks 100 **Duration 3 hours** N.B. 1. Question No. 1 is compulsory 2. Attempt any four out of remaining Six 3. Assume suitable data if necessary and justify the assumptions 4. Figures to the right indicate full marks Q1. [A] Define Soft computing. Distinguish between soft computing and hard [05] computing. [05] [B] Explain different Fuzzy membership functions. [05] [C) Determine all possible alpha level sets and strong alpha level sets for the following fuzzy set $A=\{(1,0.2), (2,0.5), (3,0.8), (4,1), (5,0.7), (6,0.8)\}$ Model the following as fuzzy set using suitable membership function [05] "numbers close to 15". Q2 [A] Explain error back propagation training algorithm with flowchart. [10] What are different types of encoding, selection, crossover and mutation [10] in Genetic Algorithm? Q3 [A] State and explain Hebb's learning rule. [10] Explain linear separability. Why can a single layer of perceptron not be [10] used to solve linear inseparable problems. Q4 [A] Let $A=\{a_1,a_2\}$, $B=\{b_1,b_2,b_3\}$, $C=\{c_1,c_2\}$. [10] Let R be a relation from A to B defined by matrix.

$$R = \begin{array}{c|cccc} b_1 & b_2 & b_3 \\ a_1 & 0.6 & 0.5 & 0 \\ a_2 & 0.1 & 0.5 & 0.4 \end{array}$$

Let S be a relation from B to C defined by

$$S = \begin{array}{c|ccc} b_1 & c_1 & c_2 \\ b_2 & 0.2 & 0.7 \\ b_3 & 1 & 0 \end{array}$$

Find

- a) max-min composition of R and S
- b) max-product composition of R and S
- [B] With the help of a flow chart explain the working of Learning Vector [10]

 Quantization

[TRUN OVER]

Q5 [A] Determine the weights after four steps of training for perceptron [10] learning rule of single neuron network starting with initial weights:-W=[0 0]', inputs as X_1 =[2 2]', X_2 =[1 -2]', X_3 =[-2 2]', X_4 =[-1 1]', d_1 =0, $d_2=1$, $d_3=0$, $d_4=1$, and c=1. [10] [B] Explain RBF and compare it with MLP. Design a fuzzy logic controller to determine the wash time of a [20] Q6domestic washing machine. Assume that the inputs are dirt and grease on clothes. Use three descriptors for each variable. Clearly indicate that if clothes are soiled to a larger degree, the wash time will be required more. Write short notes on any two from the following [20]**Q**7 [A] Derivative free optimization [B] Character recognition using neural network. [C] ANFIS

VII CBGS Comp

15/5/17

Q. P. Code: 622701

		(3 hours) Total Marks: 80	
N.B.	2	. Question No. 1 is compulsory . Attempt any three out of remaining . Assume suitable data if necessary and justify the assumptions . Figures to the right indicate full marks	
21	A	Compare IIR systems with FIR systems.	05
	В	State whether $x[n] = \sin(n \pi/3)$ is an energy or power signal with proper	05
		justification.	
	C	If $x[n] = \{1,2,2,1,3,1\}$ is a periodic signal. Plot it in circular representation for i)x [-n] ii)x [n-2] iii)x [n+2] iv)x [-(n-2)] v)x [-(n+2)]	05
	D	State BIBO stability criterion for LTI systems. Determine the range of values of 'p' and 'q' for the stability of LTI system with impulse response: $h[n] = p^n \qquad ; \ n < 0 \\ = q^n \qquad ; \ n \geq 0$	05
Q2	A	Check whether the system y[n] = a ⁿ u[n] is: i) Static or Dynamic ii) Linear or Non-linear iii) Causal or Non-Casual iv) Shift variant or Shift Invariant	10
	В	Check the periodicity of the following signals and if periodic, find their fundamental period. i) $\cos(n/6) \cdot \cos(n \pi/6)$ ii) $\sin(2\pi n/3) + \cos(2\pi n/5)$	10
Q3	A	Determine the output response of the LTI system using time domain method , whose input is $x[n] = 3 \delta[n+1] - 2 \delta[n] + \delta[n-1] + 4 \delta[n-2]$ and $h[n] = 2 \delta[n-1] + 5 \delta[n-2] + 3 \delta[n-3]$.	10
	В	If a continuous time signal x (t) = $\sin (2\pi \times 2000t) + 2 \sin (2\pi \times 1000t)$ is sampled at 8000 samples /sec. Find out the 4-point DFT of it. Sketch the phase and magnitude spectrum.	10
Q4	A	Explain any five properties of DFT.	10
	В	Compute linear convolution of the causal sequences $x[n] = \{2,-3,1,-4,3,-2,4,-1\}$ and $h[n] = \{2,-1\}$ using overlap save method.	10

[TURN OVER]

Q5	A	Compute circular convolution of the causal sequences $x[n] = \{1,-1,1,-1\}$ and	10
		$h[n] = \{1,2,3,4\}$ using radix- 2 DTT FFT method.	
	В	If the DFT of x[n] is X (k) = {2,-j3,0,j3} using DFT properties ,find: i) DFT of x[n-2] ii) Signal energy	10
		iii) DFT of x*[n] iv) DFT of x ² [n] v) DFT of x[-n]	
Q6 A	A	Explain the significance of Carl's Correlation Coefficient Algorithm in digital	10
		signal processing. Evaluate Carl's Coefficient for two causal sequences	
		$x[n] = \{2,4,4,8\}$ and $y[n] = \{1,1,2,2\}$.	
	В	i) Calculate the percentage saving in calculations in a 64 point radix-2 FFT	5
		systems with respect to the number of complex additions and multiplications	
		required, when compared to direct DFT system.	
	В	ii) Write a detailed note on DSP processor.	5