| S. R. SemII (CBGS) Comp
App - Maths-IV
(3 Hours) | Q.P. Gode: 5316 | |--|-------------------| | // (3 Hours) | [Total Marks : 80 | | N.B.: (1) Question No. one is compulsory. | DT: 23/11 | | (2) Answer any three questions from Q.2 to Q.6 | | | (3) Use of stastical Tables permitted. | | | (4) Figures to the right indicate full marks | | | 1. (a) Evaluate the line integral $\int_0^{1+i} (x^2 - iy) dz$ along the | nath or ~ ~ | (c) The probability density function of a random variable x is (b) State Cayley-Hamilton theorem & verify the same for $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ | į | <u>x</u> | -2 | -1 | 0 | 1 | 2 | 3 | |---|----------|---------|-------|------|--------|---------|---| | į | P(x) | 0.1 | k | 0.2 | 2k | 0.3 | K | | | Fi | nd i) k | ii) n | nean | iii) v | 'arianc | e | (d) Find all the basic solutions to the following problem Maximize $$z = x_1 + 3x_2 + 3x_3$$ Subject to $x_1 + 2x_2 + 3x_3 = 4$ $2x_1 + 3x_2 + 5x_3 = 7$ and $x_1, x_2, x_3 \ge 0$ 2. (a) Find the Eigen values and the Eigen vectors of the matrix $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$ (b) Evaluate $$\oint_C \frac{dz}{z^2(z+4)}$$ where c is the circle $|z|=2$ (c) If the heights of 500 students is normally distributed with mean 68 inches and standard deviation of 4 inches, estimate the number of students having heights i) less than 62 inches, ii) between 65 and 71 inches. [TURN OVER 8 5 5 5 MD-Con. 8175-15. 3. (a) Calculate the coefficient of correlation from the following data | | | | | | | | | | | | e | | | | |-----|----------|----|----|----|----|------|----|----|-----|-----|-----|----|-------|---| | ſ | ~~ | 30 | 33 | 25 | 10 | 33 ' | 75 | 40 | 85 | 90 | 95 | 65 | בכ | | | - 1 | J. | 30 | | | | | | | 7.6 | 3.5 | 1.0 | 25 | 45 | | | - | 77 | 68 | 65 | 80 | 85 | 70 | 30 | 55 | 18 | 15 | 10 | 33 | (4J_) | | | l | <u>y</u> | 00 | | | | l | | | | | | | 6 | ŧ | - (b) In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2. Out of 100 such samples, how many would you expect to contain 3 defectives i) using the Binomial distribution, - ii) Poisson distribution. - (c) Show that the matrix $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is diagonalizable. Find the transforming matrix and the diagonal matrix. 4. (a) Fit a Poisson distribution to the following data | 1 | r | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |---|---|----|------|-----|----|----|----|---|---|----| | | f | 56 | ·156 | 132 | 92 | 37 | 22 | 4 | 0 | 11 | (b) Solve the following LPP using Simplex method Maximize $$z = 6x_1 - 2x_2 + 3x_3$$ Subject to $2x_1 - x_2 + 2x_3 \le 2$ $x_1 + 4x_3 \le 4$ $$x_1, x_2, x_3 \ge 0$$ (c) Expand $$f(z) = \frac{2}{(z-2)(z-1)}$$ in the regions (i) $$|z| < 1$$, (ii) $1 < |z| < 2$, (iii) $|z| > 2$ 5. (a) Evaluate using Cauchy's Residue theorem $\oint_C \frac{1-2z}{z(z-1)(z-2)} dz$ where c is $$|z| = 1.5$$ TURN OVER 6 8 6 ģ - (b) The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6. Test at 1% level of significance whether the boys perform better than the girls. - (c) Solve the following LPP using the Dual Simplex method Minimize $$z = 2x_1 + 2x_2 + 4x_3$$ Subject to $$2x_1 + 3x_2 + 5x_3 \ge 2$$ $$3x_1 + x_2 + 7x_3 \le 3$$ $$x_1 + 4x_2 + 6x_3 \le 5$$ $$x_1, x_2, x_3 \ge 0.$$ 6. (a) Solve the following NLPP using Kuhn-Tucker conditions Maximize $$z = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$$ Subject to $$2x_1 + x_2 \le 5$$; and $x_1, x_2 \ge 0$ 6 8 (b) In an experiment on immunization of cattle from Tuberculosis the following results were obtained | | Affected | Not Affected | Total | |----------------|----------|--------------|-------| | Inoculated | 267 | 27 | 294 | | Not Inoculated | 757 | 3,55 | 912 | | Total | 1024 | 1/82 | 1206 | Use χ^2 Test to determine the efficacy of vaccine in preventing tuberculosis. 6 - (c) i) The regression lines of a sample are x + 6y = 6 and 3x + 2y = 10find a) sample means \bar{x} and \bar{y} b) coefficient of correlation between x and y = 4 - ii) If two independent random samples of sizes 15 & 8 have respectively the means and population standard deviations as $$\bar{x}_1 = 980$$, $\bar{x}_2 = 1012$: $\sigma_1 = 75$, $\sigma_2 = 80$ Test the hypothesis that $\mu_1 = \mu_2$ at 5% level of significance. 4 S. E. Sem. IV CCBbrs) Comp. Engl. Dr-4/12/15 | (3 hou | urs) | otal marks: 80 | |---------|--|------------------------------| | N.B | 1) Question no 1 is compulsory | | | | 2) Attempt any three questions from remaining five questions | | | | 3) Assume sultable data if required | | | | 4) Draw neat diagram wherever necessary | | | 1. Solv | ve any four each question carries 5 marks | ٠. | | | a) Explain role of different registers like IR, PC,SP,AC,MAR and MDR used in Von Ne model.b) Differentiate between Computer Organization and Computer Architecture. | umann
[5]
[5] | | | c) List different memory organization characteristics | [5] | | | d) What is virtual memory? | [5] | | | e) Show IEEE 754 standards for Binary Floating Point Representation for 32 bit sing 64 bit double format. | le format and [5] | | 2. | (a) I) Draw the flow chart for Booth's Algorithm for twos complement multiplicatio | n. [4] | | | II) Using Booth's algorithm show the multiplication of -3 * -7. | [6] | | | (b) What are differences between RISC and CISC processor? | [10] | | 3. | (a)Describe hardwire control unit and specify its advantages. | [10] | | | (b) Explain six stage instruction pipeline with suitable diagram. | [10] | | 4. | (a) Calculate the hit and miss using various page replacement policies LRU,OPT,FIF following sequence (page frame size 3) 4,7,3,0,1,7,3,8,5,4,5,3,4,7. State which one above example? | O for
is best for
[10] | | | (b) What is TLB? Explain working of TLB | [10] | | 5. | (a) compare interrupt driven I/O and DMA | [10] | | | (b) Explain Flynn's classification | [10] | | 6. | (a) explain set associative and associative cache mapping techniques | [10] | | | (b, What is bus arbitration? Explain any two techniques of bus arbitration. | [10] | S.E. Sem IV (COSCS) Comp. Eny. DBMS DT. 10/12/03 QP Code: 5443 ## (3 hours) Total Marks: 80 | N.B. | : (I) | Question n | umber | one is | compulso | rv . | | |------|--------|------------|---------|--------|-----------|------|-----------| | | (2) | Attempt an | y three | from | remaining | ก็ขอ | anestions | | | / TO N | BA-1 | - · | - | | | decoeson2 | (3) Make suitable assumptions if needed | Q 1 (a) Draw E-R diagram for Hospital management System. | $\vec{\lambda}$ | |---|-----------------| | 2 1 (b) Staw is it diagram for Hospital management System. | | | Convert E-R diagram into tables. | 10 | | (b) Explain authorization in sql. | 5 | | (c) List four significant differences between file processing system and | 5 | | database management system | | | Q. 2 (a) What is a deadlock? How is it detected? Discuss different types of | <u>-</u> | | deadlock prevention scheme. | 10 | | (b) Explain following terms with suitable example | 10 | | (I) Weak entity set (ii) Data manipulation language | | | (iii) Foreign key (iv) Super key | | | Q. 3 (a) When a transaction is rolled back under timestamp ordering, it is assigned | | | a new timestamp, Why can it not simply keep its old timestamp? | 10 | | (b) What is normalization? Explain 1NF, 2NF, 3NF and BCNF with examples | 10 | TURN OVER - - - MD-Con. 10795-15. QP Code: 5443 | - | 40. | |---|--| | Q. 4 (a) For the following given database, write SQL queries:- | 10 | | employee(<u>eid</u> , employee_name, street, city) | | | works(eid, cid, salary) | | | company(<u>cid</u> , company_name,city) | | | Manager(eid, manager_name) | V. | | (i)Find the names, street and city of all employees who work for "AZT" | The Many of the Control Contr | | and earn more than Rs. 30,000 | | | (ii) Find the names of all employees having "K" as the first letter in | | | their names | | | (iii) Display the annual salary of all employees. | 10 | | (b) Describe overall architecture of DBMS with diagram | 3.0 | | | | | Q. 5 (a) Discuss the different security and authorization mechanisms in | 10 | | database management system. | 10 | | (b) Explain lock based and validation based protocol with example | | | | 20 | | Q6 (a) Write short notes on any four | | | (i) Specialization and Aggregation | | | (ii) Referential integrity | | | (iii) Assignment | | | (iv) Log based recovery | | | (v) Cost base2 query optimization | • | S. E. Sem-III (CBGS) Comp. Eng. A. O. A. | | | // 0.71. | | |----|-------|---|----------| | | | QP Code: 5359 | | | N | | (3 Hours) [Total Marks 1) Attempt any four questions out of six. 2) Assume suitable data wherever required. | :80 | | 1. | | Define 0, Ω , and θ notations. To find the complexity of given recurrence relation.
(i) $T(n) = 4T(n/2) + n^2$
(ii) $T(n) = 2T(n/2) + n^3$ | 10 | | | (D) | Implement the binary search, and derive its complexity. | 10 | | 2. | | Explain 0/1 knapsack problem using dynamic programming Explain optimal storage on tapes and find the optimal order for given instance. $n = 3$, and $(l_1, l_2, l_3) = (5, 10, 3)$. | 10
10 | | 3. | | Let $n = 4$, $(p_1, p_2, p_3, p_4) = (100, 10, 15, 27)$ and $(d1, d2, d3, d4) = (2, 1, 2, 1)$. Find feasible solutions, using job sequencing with deadlines. Find a minimum cost path from 3 to 2 in the given graph using dynamic | 10 | | | | programming. 7 10 3 3 2 4 8 | 10 | | 4. | | Explain 8 Queen problem. Explain sum of subset problem, Find all possible subsets of weight that sum to m, let $n = 6$, $m = 30$, and $w[1:6] = \{5, 10, 12, 13, 15, 18\}$ | 10
10 | | 5. | (b) | Write an algorithm for Kunth-Morrie-Pratt (KMP). Explain the strassen's Matrix multiplication. | 10
10 | | б. | Write | note on (any two):- | 2.0 | 20 (i) Randomized Algorithms. (iii) Huffman coding(iv) Rabin karp algorithm (ii) Branch and bound strategy | 7 | | | | |---|--|--|---| • | S.E. Sem IV (CBGS) comp. Rny. Dt: 4/12/15 **QP Code: 5401** | (3 hoi | urs) | Total marks: 80 | |---------|--|------------------------| | N.B | 1) Question no 1 is compulsory | | | | 2) Attempt any three questions from remaining five questions | | | | 3) Assume suitable data if required | | | | 4) Draw neat diagram wherever necessary | | | 1. Solv | e any four each question carries 5 marks | ٠. | | | a) Explain role of different registers like IR, PC,SP,AC,MAR and MDR used in Von N model. b) Differentiate between Computer Organization and Computer Architecture. | eumann
[5]
[5] | | | c) List different memory organization characteristics | [5] | | | d) What is virtual memory? | [5] | | | e) Show IEEE 754 standards for Binary Floating Point Representation for 32 bit sin 64 bit double format. | ngle format and
[5] | | 2. | (a) 1) Draw the flow chart for Booth's Algorithm for twos complement multiplicati | on. [4] | | | II) Using Booth's algorithm show the multiplication of -3 * -7. | [6] | | | (b) What are differences between RISC and CISC processor? | [10] | | 3. | (a)Describe hardwire control unit and specify its advantages. | [10] | | | (b) Explain six stage instruction pipeline with sultable diagram. | [10] | | 4. | (a) Calculate the hit and miss using various page replacement policies LRU,OPT,Fi following sequence (page frame size 3) 4,7,3,0,1,7,3,8,5,4,5,3,4,7 . State which on above example? | | | | (b) What is TLB? Explain working of TLB | [10] | | 5. | (a) compare interrupt driven I/O and DMA | [10] | | | (b) Explain Flynn's classification | [10] | | 6. | (a) explain set associative and associative cache mapping techniques | [10] | | | (b, What is bus arbitration? Explain any two techniques of bus arbitration. | [10] | | • | | | | | |---|--|--|--|--| S.E. Semit Costas) comp. Boys. Computer Graphics QP Code : 5526 | N. B | (1) | Question No. 1 is compulsory. | |------|-----|--| | | | | | | (2) | Solve any three questions from the remaining | | | (3) | Assume suitable data wherever necessary. | | 1. | (a)
(b) | State what is meant by clipping. Explain any one clipping algorithm Explain flood fill algorithm in detail | 05
05 | |----|------------|--|----------| | | (0) | Differentiate between random scan and raster scan technique | 05 | | | (d) | Explain the various color models in detail | 05 | | | | | | | 2 | (a) | Define window and viewport. Derive window to viewport transformation | 10 | | | [b) | Explain what is meant by Bezier curve. Also explain how a Bezier surface | 10 | | | | can be generated from Bezier curve | | | 3 | (a) | What is meant by parallel and perspective projections? Derive the matrix | 10 | | | | for perspective projections | | | | (b) | Explain the steps used in rotation of 2 D object about an arbitrary axis and | 10 | | | | hence derive the matrix for the same | | | | | | | | 4 | (a) | Explain midpoint circle algorithm. Explain the same to plot a circle whose | 10 | | | | radius is 10 units | | | | (b) | Explain half toning and dithering techniques in detail | 10 | | | | | | | 5 | (a) | Derive Bressenhams line drawing algorithm for lines with slope < 1 | 10 | | | (b) | Explain Gourand and Phong shading techniques in detail | 10 | | | | | | | 6 | | Write short notes on:- (any two) | 20 | | | (a) | Polygon clipping method | • | | | (b) | OpenGL | | | | (c) | Sweep representations | | | | | | | | | Theoritical computer Scien | رو | |------------|---|----------| | | Q.P. Code: | / ۱ | | | (3 Hours) [Total Marks: | 100
(| | N.B. | (1) Question Number 1 is compulsory. (2) Attempt any three questions out of remaining five questions. (3) Assumptions made should be clearly stated. (4) Figures to the right indicate full marks. (5) Assume suitable data whenever required but justify the same. | R | | 1. (a) | productions P are $S \rightarrow 0 \mid 0X1 \mid 01S1$ $X \rightarrow 0XX1 \mid 1S$ | 5 | | (b)
(c) | | 5 5 | | (d) | Prove that Language $L = \{0^n 10^n \text{ for } n = 0, 1, 2, \dots \}$ is not regular. | 5 | | 2. (a) | Consider the following grammar $G = (V, T, P, S), V = \{S, X, Y\}, T \{a, b\}$ and productions P are $S \rightarrow XYX$ $X \rightarrow aX \mid \epsilon$ $Y \rightarrow bY \mid \epsilon$ Convert this grammar in Chomsky Normal Form (CNF). | 10 | | · - (b) | Design DPDA to accept language L={ $x \in \{a, b\}^* \mid N_a(x) > N_b(x) \}$, $N_a(x) > N_b(x)$ means number of a's are greater than number of b's in string x. | 10 | | 3. (a) | Design Turing machine to accept the language L = set of strings with equal number of a's and b's. | 10 | | (b) | | 10 | [TURN OVER ## Q.P. Code: 2 | | | Design Moore Machine for the input from (0+1+2) * which print the residue | Į Ŏ | |-----|-----|--|------------| | 4. | (a) | Design Moore Machine for the input from (01112) | | | -1, | (4) | a c _c + La input treated as leinary named | 10 | | | | State and prove pumping lemma for context free languages. | | | | (b) | State and broto band . | , | | | | Convert the following grammar into finite automata. | 5 | | 5. | (a) | Convert the following grammar med and the convert the following grammar med and the convert the following grammar med and the convert conver | ٠ | | | | $S \rightarrow aX \mid bY \mid a \mid b$ $V \rightarrow aS \mid bY \mid b$ | • | | | | $X \rightarrow aS \mid bY \mid b$ | | | | | 77 P. C. | 5 | | | (h) | | 10 | | | (b) | State and prove Rice's theorem | 10 | | | (c) | State and provo zares | | | | | Write regular expression for the following languages. | 5 | | 6. | (a) | Write regular expression for the following language: (i) language containing all the strings in which every pair of adjacent (i) language containing all the strings in which every pair of adjacent | | | | | (i) language containing all the stands are the alphabet | | | | ٠. | (i) language containing all the strings in which is a language containing all the strings in which it is a language containing all the strings in | | | | | $\Sigma = \{a, b\}.$ | | | | | 11 11 = -1 Malin William VII 10000000000000000000000000000000000 | | | | | (ii) language containing all the strings in which the positive of a's and b's is present but strings does not have two consecutive | | | | | a^{1S} , over the alphabet Σ {a, b}. | _ | | | , | ar , over the diplost - Company Machine". | Э | | | (b) | Write short note on "Universal Turing Machine". | 10 | | | (c) | Write short note on Oniversal Explain variations and equivalences of Turing machine. | | | | • • | | |