CAUPAI (C1) 45/12/2014, QP Code:12552 (3 Hours) Total Marks: 80 N. B.: (1) Question No. 1 is compulsory. (2) Attempt any three questions out of remaining five questions. (3) Assumptions made should be clearly stated. (4) Figures to the right indicate full marks. (5) Assume suitable data wherever required but justify the same. Give chomsky hierarchy of grammar with examples. (b) State and explain any 5 closure properties of regular languages. Compare recursive and recursively enumerable languages. (d) State and prove equivalence of NFA and DFA. (a) Design a DFA to accept strings over the alphabet set {a, b} that begin with 10 'aa' but not end with 'aa'. (b) Convert $(0 + \in) (1 \ 0)^*$ ($\in + 1$) into NFA with \in -moves and hence obtain a 10 DFA. Design a MOORE and MEALY machine to decrement a binary number. 10 (b) Give statement of pumping lemma for regular sets and hence prove that 10 $\{w \in w^R \mid W \in (a+b)^*\}$ is not regular where w^R is reverse of w. (a) Obtain leftmost derivation, rightmost derivation and derivation tree fbr the 10 string "cccbaccba". The grammar is $S \rightarrow SSa \mid SSb \mid c$ Design Turing machine as generator to add two binary numbers and hence 10 simulate for"110 + 10". Hint: Assume two way infinite tape. (a) Design a PDA to accept language $\{a^{n-1}b^{2n+1} | n \ge 1\}$. (b) Convert the boson given grammar to Chomsky Normal Form (CNF) and 10Griebach Normal Form (GNF) $E \rightarrow E+E \mid E*E \mid (E) \mid id$ Consider "id" as a single terminal/symbol. (a) Design a Turing machine as acceptor for the language $\{a^n b^m | n, m \ge 0 \text{ and } m \ge n\}.$ (i) Design PDA to check even parentheses over $\Sigma = \{0,1\}$ 10 S.E. Comp semi (CBGs) Database Mgont Systems QP Code:12512 ## (3 Hours) [Total Marks: 100 | | N.B. | (1) Question No. 1 is compulsory. | | |----|------|--|----| | | | (2) Solve any three questions out of the remaining questions.(3) Make suitable assumptions if needed. | | | 1. | (a) | Define Specialization and Generalization with an example. | 5 | | | (b) | Write about Aggregate Functions in SQL. | 5 | | | ` ' | Discuss Referential Integrity Constraints. | 5 | | | (d) | Explain Total Participation and Partial Participation with example. | 5 | | 2. | (a) | Explain the following Relational Algebra Operations with example:— (i) Set Intersection (iii) Generalized Projection | 10 | | | | (ii) Division Operator (iv) Natural join | | | | (b) | Draw an ER Diagram for a banking enterprise. Convert it into relational model. | 10 | | 3. | (a) | What is Normalization? Explain INF, 2NF, 3NF and BCNF giving examples. | 10 | | | (b) | What is an attribute? Discuss various types of attributes with examples. | 10 | | 4. | (a) | Explain sort-merge join algorithm in query processing. | 10 | | | (b) | Describe conflict serializability and view serializability with examples. | 10 | | 5. | (a) | Explain database system architecture in detail. | 10 | | | (b) | What do you mean by Data Modeling? Discuss different types of Models. | 10 | | 6. | Wri | te Short notes on :— | 20 | | | • | (a) ACID Properties | | | | | (b) Steps in Query Processing | | | | | (c) Data Control Commands in SQL | | | | | (d) Security in Database. | | | | | | | COMP COA COA QP Code:12476 | | | (3 Hours) [Total Marks: 80 | | |------|------------------------|---|----| | N.B | · (1
(2
(4
(4 | Question No. 1 is compulsory. Attempt any three questions from remaining five questions. Assume suitable data if required. Draw neat diagram wherever necessary. | | | 1. S | olve | my four: (a) What are the types of pipeline hazards? (b) Explain in brief memory mapped I/O. (c) Explain in detail cache coherence. (d) Draw flow chart of Booth's algorithm. (e) Define stored program concept and draw Von Neumann's Architecture. | 20 | | 2. | | | 0 | | | | | 0 | | 4. | | Explain features of RISC and CISC processors. Explain six stage instruction pipeline with suitable diagram. | 0 | | | | | 0 | | | (a)
(b) | | 0 | ## QP Code:12446 (3 Hours) Total Marks: 80 ## N.B.: (1) Attempt any four questions out of six question - (2) Assume suitable data if necessary. - 1. (a) Write an algorithm to find minimum and maximum value using divide and conquer and also drive it s complexity. - (b) To sort the given set of number using insertion sort and also show the result of each pass. < 11, 7, 17, 3, 9, 29, 85, 9 > _ - (a) Find an optimal solution to the knapsack instance n = 7, m = 15, Profit = {10, 5, 15, 7, 6, 18, 3} Weight = {2, 3, 5, 7, 1, 4, 1} (b) Explain optimal storage on tape with example. - 3. (a) Find a minimum cost path from 1 to 9 in the given graph using dynamic 10 programming. (b) Find the path of travelling sales person problem of given graph. TURN OVER **10** GN-Con.:8575-14. QP Code:12446 - 4. (a) To generate the Huffman code for given set of frequencies. 10 1, 1, 2, 3, 4, 8, 13, 21 (b) To implement the knuth Morris-Pratt, string matching algorithm. (a) To find MST of following graph using prim's and kruskal's Algorithm. (b) Explain flow shop scheduling using suitable data. 10 **20** - 6. Write note on (Any two) - (i) N-Queen Problem - (ii) Randomized Algorithm - (iii) Tries - (iv) The 15 puzzle problem. GN-Con.:8575-14. 10 6. QP Code: 12589 | | • | (3 Hours) | [Total Marks: 80 | |---|-------------|---|---------------------| | N | I.B. | (1) Questions 1 is compulsory. (2) Solve any three of the remaining (3) Assume suitable data if necessary | | | | (b) | Explain 8 connected flood fill algorithm in detail. Differentiate between random scan and raster Scan techniques. Explain Liang Barsky line clipping algorithm in detail | 5
5
1 | |) | | Derive Bressenham's line drawing algorithm for lines with slope <1 Explain parallel and perspective projections. Also derive the matrix projection. | for perspective 10 | | | | Derive the matrix for 2 D rotation about an arbitrary point. Explain Gouraud and Phong shading techniques with their advantages and | 10 disadvantages. | | | . ' | Explain midpoint circle algorithm. Use the same to plot the circle, who units. Explain any one polygon clipping method in detail. | ose radius is 10 10 | | | (b) | Define window, view port and hence derive window to view port transform. Explain what is meant by Bezier curve. State its properties and hence Bezier surface can be generated from Bazier curve. | | | - | | Write short notes on any two following: (i) Half toning and dithering techniques (ii) Open GL basic primitives (iii) Sweep representation | 2 û | QP Code: 12413 21/11/114 (3 Hours) [Total Marks: 80 N.B. (1) Question No. 1 is compulsory. (2) Answer any three questions from Question Nos. 2 to 6. 1. (a) Evaluate $\int_C (z-z^2)$ where C is the upper half of the circle |z|=1. What is the value of the integral for the lower half of the same circle? (b) If $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$. Find the eigen values of $A^3 + 5A + 8I$. (c) The regression lines of a sample are x + 6y = 6 and 3x + 2y = 10. Find (1) mean of x and y and (2) coefficient of correlation between x and y. (d) A machine is claimed to produce nails of mean length 5 cm. and standard deviation of 0.45 cm. A random sample of 100 nails gave 5.1 cm. as average length. Does the performance of the machine justify the claim? Mention the level of significance you apply. 2. (a) Show that the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$ is derogatory. (b) Evaluate $\int \frac{z+3}{z^2+2z+5} dz$, where Cis the circle (i) |z|=1. (ii) |z+1-i|=2. 6 (c) The mean inside diameter of a sample of 200 washers produced by a machine is 0.502 cm and the standard deviation is 0.005 cm. The purpose for which these washers are intended allows a maximum tolerance in the diameter of 0.496 to 0.508 cm, otherwise the washers are considered defective. Determine the percentage of defective washers produced by the machine, assuming the diameters are normally distributed. 3. (a) A continuous random variable X has the following probability law $f(x) = kx^2e^{-x}$, $x \ge 0$. Find k, mean and variance. (b) Solve the following LPP by Simplex method:— Max $z = x_1 + 4x_2$ Subject to $2x_1 + x_2 \le 3$ $3x_1 + 5x_2 \le 9$ $x_1 + 3x_2 \le 5$ $x_1, x_2 \ge 0$ (c) Find Laurent's series which represents the function $f(z) = \frac{2}{(z-1)(z-2)}$ when (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2. [TURN OVER 4. (a) The means of two random samples of size 9 and 7 are 196.42 and 198.82 6 respectively. The sums of the squares of the deviation from the means are 26.94 and 18.73 respectively. Can the samples be considered to have been drawn from the same population? (b) Calculate the correlation coefficient from the following data: 6 - X: 23 27 28 29 30 31 33 35 36 39 - Y: 18 22 23 24 25 26 28 29 30 32 (c) Show that the following matrix is Diagonalizable. Find the transforming matrix 8 and the Diagonal matrix. $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ 16 & 8 & 7 \end{bmatrix}$ - 5. (a) The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6. Test at 1% level of significance whether the boys perform better than the girls. - (b) Evaluate the following integral by contour integration $\int_{-\infty}^{\infty} \frac{x^2 dx}{\left(x^2 + 1\right)\left(x^2 + 4\right)}$ (c) Use Kuhn Tucker method to solve the NLPP:-- Q Max $$Z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$$ St $x_1 + x_2 \le 2$ $2x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$. 6. (a) For special security in a certain protected area, it was decided to put three lighting bulbs on each pole. If each bulb has a probability p of burning out in the first 100 hours of service, calculate the probability that at least one of them is still good after 100 hours. If p = 0.3, how many bulbs would be needed on each pole to ensure 99% safety that atleast one is good after 100 hours? (b) Use Duality to solve the following LPP: 6 Max $$Z = 2x_1 + x_2$$ Subject to $2x_1 - x_2 \le 2$ $x_1 + x_2 \le 4$ $x_1 \le 3$ $x_1, x_2 \ge 0$ (c) The number of car accidents in a metropolitan city was found to be 20, 17,12, 6, 7, 15, 8, 5, 16 and 14 per month respectively. Use χ² test to check whether these frequencies are in agreement with the belief that occurrence of accidents was the same during 10 months period. Test at 5% level of Significance.