University of Mumbai

Program: Computer Engineering Curriculum Scheme: Rev2019

Examination: Third Year Semester: v

Course Code: CSC501 Course Name: Theoretical Computer Science Time: 2.30 hours Max. Marks: 80

O1. All questions compulsory 2 marks each (20 Marks)

$\int 01 (20)$	Choose the correct option for following questions.
$\mathbf{Q}\mathbf{I}$. (20	
Marks)	
1	
1.	How many states will be there in FSM to check if any binary number is divisible by 4 or
	not?
Option A:	3
Option B:	4
Option C:	6
Option D:	5
2.	Which of the following is correct?
Option A:	There is a PDA by final state for every PDA by empty stack.
Option B:	There is a PDA by empty stack for every PDA by final state.
Option C:	Both A and B
Option D:	There is a PDA by null state for every PDA by empty stack.
3	Which of the following statements are true?
5.	Statement 1: Mealy and Moore machine are equivalent in terms of capacity
	Statement 2: While converting from Mealy to Moore machine. If initial state is
	splitted then one of the splitted states will become new initial state.
	Statement 3: For Mealy machine, the output depends on the current input.
	Statement 4 . There exists more number of states in Moore machine as compared
	to Mealy machine.
Option A:	1 and 2
Option B:	1, 2 and 3
Option C:	1 only
Option D:	1. 2 and 4
-1	
	If regular expression (101)* is converted to ε -NFA then how many states will be
4.	there in converted ϵ -NFA?
Option A:	5
Option B:	7
Option C:	8
Option D:	6
5.	Let P, Q and R be the regular expression over given input symbol set and P is not
	ε (epsilon), then R = Q + RP has a unique solution:
Option A:	Q*P

Option B:	QP*			
Option C:	Q*P*			
Option D:	(P*Q*) *			
6.	If $\Sigma = \{0, 1\}$. What is Σ^{2} ?			
Option A:	Σ·= {0, 1, 00, 01, 10, 11, 000, 001,}			
Option B:	Σ [·] = {ε, 0, 1, 00, 01, 10, 11, 000, 001,}			
Option C:	Σ = {ε, 0, 00, 000, 0000,}			
Option D:	Σ = {ε, 1, 11, 111, 1111,}			
7.	For minimizing DFA which of the following statements are true?			
Option A:	Statement 1: We can replace initial state.			
Option B:	Statement 2: Any final state can be replaced by other final state only.			
Option C:	Statement 3: Any non-final state can be replaced by other non-final state only.			
Option D:	Statement 4: We cannot replace initial state.			
8.	is Type 2 grammar according to Chomsky Hierarchy.			
Option A:	Regular Grammar			
Option B:	Context Sensitive Grammar			
Option C:	Context Free Grammar			
Option D:	Unrestricted Grammar			
9.	What do the symbols $\{\Gamma, B\}$ indicate in formal definition of Turing Machine?			
Option A:	{input alphabet, Blank symbol}			
Option B:	{tape alphabet, Blank symbol}			
Option C:	{input alphabet, Stack symbol}			
Option D:	{Stack alphabet, Blank symbol}			
10.	Which of the following are undecidable problem?			
Option A:	Decide Language is regular or not			
Option B:	Check Ambiguity			
Option C:	Derive Parse Tree			
Option D:	Halting Problem			

Q2. (20 Marks)	Solve any Two Questions out of Three 10 marks each.
А	What is ambiguous grammar? Check weather following grammar is ambiguous or not E→E+E E*E (E) id
В	Design Turing Machine to recognize language, $L = \{a^n b^{n+1} n \ge 1\}$.
С	Construct DFA equivalent to NFA ({p,q,r,s}, {0,1}, δ , p, {q,s}) and minimize the given DFA where δ is

	state	0	1
	$\rightarrow p$	q, r	q
	*q	R	q, r
	r	S	р
	* S	-	р

Q3. (20 Marks)	
А	Solve any Two 5 marks each.
i.	Explain Post Correspondence Problem in detail.
ii.	Prove that $L = \{W c W^R W \in (a + b)^*\}$ is not regular.
iii.	Write Short note on Rice's Theorem
В	Solve any One 10 mark each
i.	Convert given Regular Expression, $RE = a(a + b)*b$ to Minimized DFA.
ii.	Give and explain formal definition of Pumping Lemma for Regular Language and prove that following language is not regular
	L= { 0^{i} i i is prime number}

Q4. (20 Marks)	
А	Solve any Two 5 marks each.
i.	Write Short note on Halting Problem.
ii.	Differentiate between FA and PDA.
iii.	Explain Universal Turing Machine in detail.
В	Solve any One 10 mark each
i.	Convert $(00+11)^*(10)^*$ into ε - NFA.
ii.	Design PDA for $L = \{a^{2n} b^n, n \ge 1\}.$