University of Mumbai Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: Third Year Semester: V

Course Code: CSC504 Course Name : Data Warehousing & Mining Time: 2 hours 30 mins Max. Marks: 80

Q1. All questions compulsory 2 marks each (20 Marks)

Q1.	What is the access rights for a data Warehouse?					
Option A:	Read Only					
Option B:	Write only					
Option C:	Read & Write					
Option D:	None					
Q2.	Vhat is Transient data?					
Option A:	Data in which changes to existing records cause the previous version of the records to be eliminated					
Option B:	Data in which changes to existing records do not cause the previous version of the records to be eliminated					
Option C:	Data that are never altered or deleted once they have been added					
Option D:	Data that are never deleted once they have been added					
Q3.	Which Operation treats incorrect or missing data?					
Option A:	Pre-processing					
Option B:	Interpretation					
Option C:	Selection					
	Selection					
Option D:	Transformation					
Option D: Q4.	Transformation Summarization of the general characteristics or feature of a target class of data is known as					
Option D: Q4. Option A:	Transformation Summarization of the general characteristics or feature of a target class of data is known as Data Characterization					
Option D: Q4. Option A: Option B:	Transformation Summarization of the general characteristics or feature of a target class of data is known as Data Characterization Data Classification					
Option D: Q4. Option A: Option B: Option C:	Transformation Summarization of the general characteristics or feature of a target class of data is known as Data Characterization Data Classification Data discrimination					

University of Mumbai Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: Third Year Semester: V

Course Code: CSC504 Course Name : Data Warehousing & Mining

me: 2 hours 30	mins Max. Marks: 80
Q5.	is a technique which is used for data reduction in data mining process
Option A:	Attribute subset selection
Option B:	Correlation
Option C:	Cartesian Product
Option D:	Join
Q6.	For a Confusion Matrix, True Negative= 100, False Positive= 20, False Negative=10, True Positive=200. Values of Sensitivity and Specifity are:
Option A:	95% and 83.3%
Option B:	100% and 70%
Option C:	70% and 100%
Option D:	86.2% and 74%
Q7.	Outliers effect which algorithm the most?
Option A:	K-means clustering algorithm
Option B:	K-medoids clustering algorithm
Option C:	K-medians clustering algorithm
Option D:	K-modes clustering algorithm
Q8.	What is the output given by Hierarchical Clustering ?
Option A:	final estimate of cluster centroids
Option B:	tree showing how close things are to each other
Option C:	assignment of each point to clusters
Option D:	outliers

University of Mumbai Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: Third Year Semester: V CSC504 Course Name : Data Warehousing & Minir

	Course Code: CSC504 Course Name : Data Warehousing & Mining						
Tim	e: 2 hours 30 mi	ns N	/lax. Marks: 80				
	Q9.	This method constructs a highly compact data structure to c original transaction database while discovering interesting p	ompress the patterns				
	Option A:	Apriori					
	Option B:	Classification					
	Option C:	Clustering					
	Option D:	Frequent Pattern Growth					
	Q10.	Clickstream is also known as					
	Option A:	Web log					
	Option B:	Buffer Data					
	Option C:	Rank-sink					
	Option D:	Hub					

Q2. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each					
А	Suppose that a data warehouse for Big University consists of the four					
	dimensions student, course, semester, and instructor, and two					
	measures count and avg grade. At the lowest conceptual level (e.g., for					
	a given student, course, semester, and instructor combination), the avg					
	grade measure stores the actual course grade of the student. At higher					
	conceptual levels, avg grade stores the average grade for the given					
combination.						
	(a) Draw a snowflake schema diagram for the data warehouse.					
	(b) Starting with the base cuboid [student,course,semester,instructor],					
	what specific OLAP operations (e.g., roll-up from semester to year)					
	should you perform in order to list the average grade of CS courses for					
	each Big University student.					

University of Mumbai Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: Third Year Semester: V

ge. The age 16, 16, 19,
16, 16, 19,
25 36 10
55, 50, 40,
modality
nird quartile
tributes are a
handling this
ni

University of Mumbai Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: Third Year Semester: V Course Code: CSC504 Course Name : Data Warehousing & Mining

Time: 2 hours 30 mins

Max. Marks: 80

Q3. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each						ks each	
A	The follo databas for age count re departm	owing ta e. The represe present nent, sta	able cons data hav nts the a ts the nu tus, age	sists of tra e been ge ge range mber of da , and sala	ining data fro meralized. Fo of 31 to 35. I ata tuples ha ry given in th	om an emp or example For a giver aving the va nat row	oloyee e, "31 n row o alues	35" entry, for
	depa	artment	status	age	salary	count		
	sale	5	senior	3135	46K50K	30		
	sale	5	junior	2630	26K30K	40		
	sale	5	junior	3135	31K35K	40		
	syste	ems	junior	2125	46K50K	20		
	syste	ems	senior	3135	66K70K	5		
	syste	ems	junior	2630	46K50K	3		
	syste	ems	senior	4145	66K70K	3		
	mar	keting	senior	3640	46K50K	10		
	mar	keting	junior	3135	41K45K	4		
	secr	etary	senior	4650	36K40K	4		
	secr	etary	junior	2630	26K30K	6		
В	Let statu (a) U d Consider be group	s be the se your ata. four ob ed toge	e class la algorithr jects with ther into	bel attribu m to const h two attri two cluste	te. truct a decisi butes (X,Y). ers .Followin	on tree fro These four g are the c	om the	given ts are to s with
	their attribute value. Apply K-means clustering algorithm on given							en
	dataset.							
		0	bjects		Х	Y		
			А		1	1		
			В		2	1		
			С		4	3		
			D		5	4		

University of Mumbai Program:

Computer Engineering Curriculum

Scheme: Rev2019

Examination: Third Year Semester: V

	Course Code: CSC504	4 Course Name	: Data Warehousing &	Mining	
Tim <u>e: 2 hours 3</u>	30 mins		Ma	x. Marks: 80	
С	C A database has five transactions. Let min sup = 60% and min con 80% .				
		TID	Items bought		
		T100	{M, O, N, K, E, Y}		
		T200	{D, O, N, K, E, Y}		
		T300	{M, A, K, E}		
		T400	{M, U, C, K, Y}		
		T500	{C, O, O, K, I, E}		
	(a) Find all frequ (b) List all the str	ent itemsets usin ong association i	g Apriori rules (with support s ar	nd confidence c)	

University of Mumbai Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: Third Year Semester: V Course Code: CSC504 Course Name : Data Warehousing & Mining

Time: 2 hours 30 mins

Max. Marks: 80

Q4. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each					
A	Car theft example: Attributes are color, type, origin and the subject, stolen can be either yes or no.					
	Car No.	Туре	Origin	Stolen		
	1	Red	Sports	Domestic	Yes	
	2	Red	Sports	Domestic	No	
	3	Red	Sports	Domestic	Yes	
	4	Yellow	Sports	Domestic	No	
	5	Yellow	Sports	Imported	Yes	
	6	Yellow	SUV	Imported	No	
	7	Yellow	SUV	Imported	Yes	
	8	Yellow	SUV	Domestic	No	
	9	Red	SUV	Imported	No	
	10	Red	Sports	Imported	Yes	
	Apply Naïve-Bayes algorithm on above dataset					
В	Use the data g	jiven below.	Create adjace	ncy matrix. Use	Single link	
	algorithm to clu	uster given	data set. Draw	Dendrogram.	_	
		Object	Attribute(X)	Attribute(Y)	_	
		A	2	2		
		В	3	2		
		C	1	1		
		D	3	1		
		E	1.5	0.5		
С	Explain Personalization with an example.					