University of Mumbai

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: Final Year

Semester: VII

Course Code: CSC701 Course Name : Digital Signal & Image Processing

Max. Marks: 80

Time: 2.5 hour (150 minutes)

Q1. All questions compulsory 2 marks each (20 Marks)

Q1.	Consider the given discrete time signal, $x[n]=[5,6,3,8,0,0,2,5]$ (Origin:8). Compute					
	x(n-2)					
Option A:	[5,2,0,0,8,3,6,5] (Origin:8)					
Option B:	[5,6,3,8,0,0,2,5] (Origin:6)					
Option C:	[5,6,3,8,0,0,2,5] (Origin:0)					
Option D:	[3,4,1,6,-2,-2,0,3] (Origin:6)					
Q2.	In Discrete Fourier Transform for N=8, total complex additions = ?					
Option A:	64					
Option B:	8					
Option C:	56					
Option D:	41					
Q3.	Determine whether the given signal is periodic or not. If yes, specify its					
	fundamental period x(n)=cos(π n/2) - sin(π n/2) + 3cos(π n/4 + π /3)					
Option A:	Periodic, 4					
Option B:	Non-periodic					
Option C:	Periodic, 8					
Option D:	Periodic, 16					
Q4.	Consider the analog signal $x(t)=3\cos(200\pi t)$, Suppose that the signal is sampled at					
	the rate $Fs = 150$ Hz. What is the discrete-time signal obtained after sampling?					
Option A:	$3\cos(\pi n/2)$					
Option B:	$3\cos(2\pi n/3)$					
Option C:	$5\cos(\pi n/4)$					
Option D:	$5\cos(2\pi n/3)$					
Q5.	Consider the given discrete time signal, $x[n]=[2,3,4,5,6,0,2,9]$ (Origin:5). Compute					
	x(n-2)					
Option A:	[4,5,6,7,8,2,4,11] (Origin:7)					
Option B:	[2,3,4,5,6,0,2,9] (Origin:3)					
Option C:	[2,3,4,5,6,0,2,9] (Origin:0)					
Option D:	[0,1,2,3,4,-2,0,7] (Origin:3)					

Q6.	Not an image file format.					
Option A:	TIFF					
Option B:	BMP					
Option C:	JPEG					
Option D:	PDF					
Q7.	Image enhancement is a purely processing technique as the desired result varies from					
Option A:	subjective, person to machine					
Option B:	subjective, person to person					
Option C:	objective, person to person					
Option D:	objective, person to machine					
Q8.	For any location (x,y) , the output image $g(x,y)$ is equal to the result of applying T					
	to the neighborhood of (x,y) in f.					
Option A:	f(x,y) = T(g(x,y))					
Option B:	g(x,y) = T(f(x,y))					
Option C:	g(x,y) = T(g(x,y))					
Option D:	f(x,y) = T(f(x,y))					
Q9.	Highlighting the contribution made to total image appearance by specific bits.					
Option A:	Contrast stretching					
Option B:	Gray-level slicing					
Option C:	Bit-plane slicing					
Option D:	Thresholding					
Q10.	A subset R of pixels in an image is called a of the image if R is a					
	connected set.					
Option A:	Region					
Option B:	Portion					
Option C:	Part					
Option D:	Subset					

Q2.	Solve any Four out of Six	5 marks each
(20 Marks		
Each)		
А	$x(n) = \{1,2,3,4\}$ is periodic, find $x(0), x(5), x(7), x(102)$	
В	Determine the power of the unit step sequence	
C	For the given causal sequences $x(n)=[3,2,8,9]$ and $y(n)=[4,2,3,9]$	4,3,6]. (Origin:3 in
C	x(n) and 4 in $y(n)$) Find the cross correlation.	
D	How to represent an image? Give an example.	
	Justify or Contradict.	
E	"Point processing techniques are called as no Zero memory	y operations."
F	What do you mean by image segmentation? Why is segme	ntation important?

Q3.	Solve any Two Questions out of Three10 m								10 mar	ks each
(20 Marks Each)										
А	$X(K)=\{8, -2, 0, -2\}$ find x(n) by Inverse Discrete Fourier Transform									
В	What is the circular convolution of the sequences $X1(n) = \{1, 2, 3, 4\}$ and $x2(n) = \{5, 6, 7\}$									
	Perform Histogram Equalization on the following 3 bpp image. Calculate the new histogram. Plot the original and new histogram and show the new image.									
	5	0	7	7	5	4	5	2	0	1
C	7	5	6	4	5	3	4	3	2	5
C	4	3	6	1	7	3	2	4	3	5
	7	4	4	1	6	4	3	7	7	4
	3	2	5	1	1	1	1	5	4	0

Q4. (20 Marks Each)	Solve any Two Questions out of Three	10 marks each
А	$x(n) = \{1, 3, 4, 2, 1, 2, 3, 4\}$ find $X(K)$ by FFT	

	Explain (Contrast s	stretching.	Perform	Contrast stretching on the following 4	
	bpp images.					
	r1=5	, r2 = 9, 4 BPP	s1= 3, si IMAGE	2 = 10		
В	7	8	5	1		
	7	8	9	2		
	5	9	8	7		
	8	8	12	15		
					-	
С	Discuss c	lifferent a	pproaches	of edge d	etection.	