Curriculum Scheme: Rev2016

Examination: BE Semester VII

Course Code: ILO 7015 and Course Name: Operations Research

Time: 2 hours 30 minutes

_

Max. Marks: 80

0701_R16_ALL_VII_ILO7015_QP_Sample

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks						
1.	Which of the following is not a characteristic of the Standard form of a Linear programming problem?						
Option A:	The objective function is of the maximization type						
Option B:	The constraints are inequalities of the type						
Option C:	The constraints are equations						
Option D:	All decision variables are 0						
2.	If the objective of the Primal is to maximize with constraints of the type then						
Option A:	Objective of the Dual is to minimize with constraints of the type						
Option B:	Objective of the Dual is to maximize with constraints of the type						
Option C:	Objective of the Dual is to minimize with constraints of the type						
Option D:	Objective of the Dual is to maximize with constraints of the type						
3.	In dual simplex method the solution is optimal if all						
Option A:	$XBi's \ge 0$						
Option B:	Δ_j 's ≥ 0						
Option C:	XB_i 's ≤ 0						
Option D:	XB_i 's = 0						

4.	The optimal solution to the Linear programming problem Maximize $Z=3x1+x2$ subject to the constraints $-2x1+x2 \le 1$ $x 1 \le 2$ $x 1+x2 \le 3$								
	and x 1, $x^2 \ge 0$								
Option A:	(0,1)								
Option B:	(2,1)								
Option C:	(2,0)								
Option D:	(2/3 ,7/3)								
5.	A saddle po which is	int of a pa	ayoff matr	ix is the position of such an element in the payoff matrix					
Option A:	minimum ir	1 its row a	and maxim	num in its column					
Option B:	minimum ir	ı its colur	nn and ma	aximum in its row					
Option C:	minimum ir	1 its row a	and minim	um in its column					
Option D:	maximum i	n its row	and maxin	num in its column					
6.	The two per	son zero	sum game	e given by the matrix					
		Play	yer B						
	Player A	1	1						
		4	-3						
Option A:	Is not fair								
Option B:	Is fair								
Option C:	Is fair and strictly determinable								
Option D:	Is not fair a	nd strictly	v determin	able					
7.	The stateme	ent of We	ak Duality	7 Theorem is					
Option A:	If the prima objective fu	l is of ma inction va	ximization lue greate	n type every feasible solution to the dual has an r than or equal to every feasible solution to the primal.					

Option B:	If $P = D$ have feasible solutions such that $W = Z$, then these are optimal to Primal and Dual.
Option C:	If P and D have feasible solution then both have optimal solutions with $Z^*=W^*$
Option D:	If X^* and W^* are optimal solutions to P and D, then $XV + WU = 0$ (at optimum) w
8.	On an average, 6 customers reach a telephone booth every hour to make calls. Determine the probability that exactly 4 customers will reach in 30 minute period, assuming that arrivals follow Poisson distribution.
Option A:	0.5
Option B:	0.168
Option C:	0.182
Option D:	0.159
9.	Which one is NOT the feature of the Dynamic programming problem?
Option A:	Dynamic programming splits the original large problem into smaller sub-problems
Option B:	It involves multistage decision making
Option C:	A wrong decision taken at one stage does not prevent from taking of optimum decisions for the remaining stages
Option D:	It is essential to know about the previous decisions and how the state arise
10.	The EOQ for the following data Annual usage = 1000 pieces Expending cost = Rs. 4 per order Cost per piece = Rs. 250 Inventory holding cost= 20% of Average inventory Ordering cost = Rs. 6 per order Material holding cost= Re.1 per piece
Option A:	22
Option B:	23
Option C:	20
Option D:	24

Q2 (20 Marks)	Solve any l	Solve any Four out of Six 5 marks each								ach						
	Solve the game whose payoff matrix is given by															
				Play	yer]	B										
А	Player	A ·	-3	-1	(6										
			2	0	2	2										
		4	5	-2	-	4										
В	Write the definition of the d	$x = 2$ $x_1 + 2$ x_1 x_2 x_3 4	f the $x_1 - x_2 - x_1 - x_1 - x_1 + x_1$	foll $x_2 + x_3$ $x_2 + x_2 + x_3$ $x_2 + x_3$	owi 4 x ≤ 5 $-x_3$ $3 x_3$ ≤ 1	ng L ₃ ≤ 6 ≤ 1 2	2PP:									
С	A company manufactures around 200 bikes.Depending upon the availability of raw material and other conditions, the daily production has been varying from 196 to 204 bikes . The finished bikes are transported in a specially designed three- storeyed lorry that can accommodate only 200 bikes , whose probability distribution and random numbers are given in the following table:Day123456789101112131415Random No.828978245361184504235077275410Production/day20220320219820020119200196198200202199200197Answer the following questions1)Simulate the process to find out what will be the average number of bikes waiting in the factory2)What will be the average number of empty space in the lorry?															
D	The owner strawberries	of a c s. The	chair e fol	n of low:	4 gr ing 1	ocer table	y sto e giv	ores ves 1	s has the e	s pur estim	chase ated	ed si prof	x cra its of	tes c f eac	f fre h sto	sh ore

	when it is al	located	various nu	mber of box	xes.		
			1	2	ores 3	4	
		0	0	0	0	0	
		1	1	2	6	2	
		2	6	2	8	3	
	Number of	3	7	6	8	4	
	boxes	4	7	8	8	4	
		5	7	9	8	4	
			7	10	8	4	
	The owner of make zero a the profits u	loes not llocatio sing dy	t wish to sp n. Find the namic prog	lit crates be allocations ramming.	tween store of six crate	es, but is will es so as to m	ling to aximize
Е	A grocery st an average minutes. As distribution 1)Average r 2) Average	tore emp every 5 ssuming for serv number time a c	ploys one c minutes w Poisson o rice time, fi of custome sustomer wa	ashier at its while the cass distribution nd rs in the qua- aits before b	counter. N shier can so for arriva eue being served	ine customer erve 10 cust l rate and e d	rs arrive on omers in 5 exponential
F	A Stocklist The demand inventory he per order is 1) The 2) Opti 3) Min	has to s d is fixe olding c Rs. 350 optimu mum sc imum to	upply 1200 ed and the cost is Rs. (Determin m lot size q heduling p otal variable	00 units of a shortage co 0.20 per uni e 0 eriod t_0 e yearly cos	product po ost is assur t per mont	er year to his ned to be in h and the or	s customer. Ifinite. The dering cost

Q3. (20 Marks)	Solve any Two Questions out of Three10 marks eachPlease delete the instruction shown in front of every sub question
A	Solve the following LPP by Simplex Method. Maximize $Z=x1 + 4x2$ subject to the co $2x1 + x2 \le 3$ $3x1 + 5x2 \le 9$ $x1 + x3 \le 5$ where x1, x2
В	Solve the following assignment problem

					Persons					
			1	2		3	4			
		Α	10	12	2	19	11			
	Tasks	В	5	10)	7	8			
		С	12	14	1	13	11			
		D	8	15	5	11	9			
	Solve the	Trans	porta	tion pr	oblen	n and	test fo	or optin		
	Solve the	Trans	porta	tion pr	oblen D3	n and D4	test fo	or optim ailable		
	Solve the O1	Trans	porta D1 1	tion pr D2 2	D3	n and D4 4	test for Av 30	or optin ailable		
С	Solve the O1 O2	Trans	porta D1 1 3	tion pr D2 2 3	D3 1 2	n and D4 4 1	test fo Av 30 50	or optin ailable		
С	Solve the O1 O2 O3	Trans	D1 1 3 4	tion pr D2 2 3 2	D3 1 2 5	n and D4 4 1 9	Av 30 50 20	or optin ailable		

Q4. (20 Marks)	Solve any Two Questions out of Three10 marks eachPlease delete the instruction shown in front of every sub question
А	Find the optimum soln to the LPP Max $Z = 15x_1 + 45x_2$ subject to $x_1 + 16x_2 \le 240$ $5x_1 + 2x_2 \le 162$ $x_2 \le 50$ and $x_1, x_2 \ge 0$ If c_2 is kept fixed at 45, determine how much c_1 be changed without affecting the above solution.
В	Write the dual of the following LPP and obtain the solution. Hence or otherwise, find the solution of the primal problem. Max. $Z_x = 40x_1 + 50x_2$ subject to the constraints $2x_1 + 3x_2 \le 3$ $8x_1 + 4x_2 \le 5$ and $x_1, x_2 \ge 0$
С	A movie theater has two ticket counters. Customers arrive to buy tickets at a mean rate of 50/hr. A person in each counter requires an average service rate of 30/hr. When both counters are busy, an arriving customer joins a single line to buy the tickets. Determine the basic measures of Performance L_s , L_q , W_s and W_q .