UOM Exam Second half 2021_Question paper_R2019/CSC305 - Computer Graphics /Sem-III / COMPUTER ENGINEERING

Dear Student,

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format only.
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration of the exam.

	or the exam.
*	Required
1.	Email *
2.	Student Name (As per exam form filled) *
3.	Seat No * Refer Hall ticket

4.	Class *		
	Mark only one oval.		
	SE3 SE4 SE9		
5.	Roll No. *		
	olve Questions as per the structions given separately.	 - Please upload a single PDF for Q1 to Q4 - For MCQs Question write Question number & correct option with complete text in option. - Q2 to Q4 are subjective questions - Solve Questions as per the instructions and marks allotted. 	

Q1.	Choose the correct option for following questions. All the Questions ar compulsory and carry equal marks
1.	Unequal brightness is the example of
Option A:	Antialiasing
Option B:	High Resolution
Option C:	Polygon Rendering
Option D:	Aliasing
2	Bresenham's line drawing algorithm uses
Option A:	Real and integer arithmetic
Option B:	Floating point arithmetic only
Option C:	Real arithmetic only
Option D:	Integer Arithmetic only
3.	The Pixel (Xw, Yw, w) represents
Option A:	Wrong representation of pixel
Option B:	3-Dimensional coordinate system
Option C:	Normalized device coordinate system
Option D:	Homogeneous Coordinate System
opmon D.	27011080110001 0 0 0 1 0 111110 0 0 7 10 1111
4.	The process of changing position of an object along the circular path is called a
Option A:	Translation
Option B:	Rotation
Option C:	Shearing
Option D:	Reflection
5.	When the 2D point (x, y) is reflected about an origin then new coordinates of the
	point are given by
Option A:	(-x, -y)
Option B:	(x, -y)
Option C:	(y, x)
	(-x, y)

б.	In Cohen Sutherland line clipping algorithm, if both the endpoints of line segment lie inside the window boundary then region code of both the end		
	points are		
Option A:	0001		
Option B:	0000		
Option C:	1000		
Option D:	0010		
7.	What are the final coordinates of the point P (5,5,5) after anticlockwise rotation		
	by an angle 90 about the Z-axis?		
Option A:	(5, -5, -5)		
Option B:	(-5, -5, -5)		
Option C:	(-5, 5, 5)		
Option D:	(5, 5, 5)		
	The equation of the Beginners is given as		
8. The equation of the Bezier curve is given as $P(u) = (1-u)^3. P_1 + 3.u. (1-u)^2. P_2 + 3.u^2. (1-u). P_3 + u^3 P_4 \text{ where the value}$			
	$[(1-a)^{-1} - (1-a)^{-1} + 1 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4$		
Option A:	-1 <= u <= 1		
Option B:	0 <= u <= 1		
Option C:	1 <= u <= 100		
Option D:	100 <= u <= 200		
Opnon D.	100 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
9.	is used to detect the visible surfaces and remove hidden surfaces		
Option A:	Boundary Fill algorithm		
Option B:	Liang Barsky algorithm		
Option C:	Bresenham's algorithm		
Option D:	Area Subdivision method		
10.	is used for recording actions of actors for animations or visual		
	effects.		
Option A:	Deformation		
Option B:	Motion Capture		
Option C:	Rotation		
Option D:	Reflection		

Q2.		
(20 Marks Each		
A	Solve any Two 5 marks each	
į.	Plot a circle using midpoint circle drawing algorithm with radius 4 units	
	and centered at origin	
ii.	Given a triangle with coordinate points A (4, 5), B (7, 5), C (6, 7). Apply	
	the reflection with respect to X axis and obtain the new coordinates of the	
	object.	
iii.	Define the following terms with example	
	a) Rasterization and Rendering	
	b) Scan Conversion	
В	Solve any One 10 mark each	
į.	Derive 3 - D composite transformation matrix for rotating an object about	
	an arbitrary axis.	
ii.	What is B-spline curve? What are advantages of B-spline curve over Bezier	
	curve? Explain it with example.	

Q3.		
(20 Marks Each)		
A	Solve any Two 5 marks each	
i.	Derive the 2-D composite transformation matrix to rotate an object about	
	an arbitrary point in clockwise direction.	
ii.	What is back surface detection? Explain Z Buffer algorithm with example	
iii.	What is an Animation? What are the different principles of animation?	
В	Solve any One 10 mark each	
i.	What are the drawbacks of Sutherland polygon fill algorithm? How that are	
	overcome by Weiler Atherton polygon clipping algorithm, Explain it with	
	example.	
ii.	Explain scan line polygon fill algorithm with suitable example	

Q4. (20 Marks Each) A Solve any Two 5 marks each What is normalization transformation? Explain it with example i ii What are drawbacks of the boundary fill algorithm? How can that be overcome by the Flood Fill algorithm? Write flood fill algorithm using 8 connected approach. What is Parallel Projection? Derive the homogeneous transformation iii matrix for parallel projection Solve any One 10 mark each \mathbf{B} Derive and explain mid-point ellipse drawing algorithm i Clip the line segment using Liang Barsky line clipping algorithm. The Coordinates of window boundaries are (Xwmin, Ywmin) = (4, 4) and (Xwmax, Ywmax) = (10, 9), and coordinates of two endpoints of line segment are P1(x1, y1) = (2, 5) and P2(x2, y2) = (8, 11)

0.	riease opioad complete scanned answer copy in a single FDF file.
	Files submitted:
7.	Have you uploaded correct scanned copy of the answer sheets. *
	Mark only one oval.
	YES

UOM Exam Second half 2021_Question paper_R2019/CSC303 - Data Structure /Sem-III / COMPUTER ENGINEERING

Dear Student,

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration

	of the exam.	Ç
*	Required	
1.	Email *	
2.	Student Name (As per exam form filled) *	
3.	Seat No * Refer Hall ticket	
4.	Class * Mark only one oval.	
	SE3	
	SE4	
	SE9	

5. Roll number *

Solve Questions as per the instructions given separately.

- Please upload a single PDF for Q1 to Q4
- For MCQs Question write Question number & correct option with complete text in option.
- Q2 to Q4 are subjective questions Solve Questions as per the instructions and marks allotted.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	The postfix form of the infix expression $A + B * C/D - E + F$ is	
Option A:	ABCD*/+EF+-	
Option B:	ABC*D/+E-F+	
Option C:	ABC*D/EF-++	
Option D:	ABCD*/EF++-	
2.	If pointer p is pointing to the last node of the doubly linked list and insertLast () function is called to insert a newNode in the list then which statement needs to be	
	executed.	
Option A:	p→next=newNode; newNode→prev=p; newNode→next=NULL; p=newNode;	
Option B:	newNode→prev=p; p→next=newNode; p→prev=NULL; newNode=p;	
Option C:	p→prev=newNode; newNode→next=p;p=newNode; newNode→prev=NULL;	
Option D:	newNode→next=p; p→next=newNode; newNode→prev=NULL; newNode=p;	
- partie		
3.	Given the following input (22, 34, 11, 68, 88, 41, 73, 98) and the hash function	
	x mod 10, which of the following statements are true?	
	i) All elements hash to the same value	
	ii) 11, 41 hash to the same value	
	iii) 68, 88, 98 hash to the same value	
	iv) Each element hashes to a different value	
Option A:	ii only	
Option B:	iii only	
Option C:	ii and iii	
Option D:	i or iv	
-		
4.	Consider the Binary Search Tree given below and find the result of post-order	
	traversal sequence	
	(7)	
	(5) (12)	
	(3) (6) (9) (15)	
	3 6 9 15	
	8 (10) (13) (17)	
Option A:	1134567801012131517	
Option B:	11 4 3 6 5 9 10 0 13 17 15 12 7	
Option C:	4 1 3 5 6 10 8 9 12 17 13 15 7	
Option D:	17 13 15 10 8 9 12 6 4 1 3 5 7	
Para.		

5.	Which of the following are the applications of Queue?	
	i Resource shared by multiple users	
	ii. Call Centre phone systems	
	iii. Recursion	
	iv. Data transfer asynchronously among client and server	
Option A:	ii, iii	
Option B:	į, ii, iii	
Option C:	į, ii, iv	
Option D:	į, iii, iv	
6.	In a list of 150 elements if we wish to access the 79th element of list then	
	data structure will require less time to access the element.	
Option A:	Stack	
Option B:	Queue	
Option C:	Linked List	
Option D:	Array	
•		
7.	For Linked List 10->20->30->40->50, What does the following function print	
	with first node as head?	
	void fun1(struct node* head)	
	vola lant (belace node neda)	
	-	
	· ·	
	if(head == NULL)	
	as as factorises and assets	
	return;	
	<pre>fun1 (head->next->next);</pre>	
	printf("%d ", head->data);	
	}	
Option A:	10->20->30->40->50	
Option B:	50->40->30->20->10	
Option C:		
Option D:	50->30->10	
Cpuon D.	JU JU 10	
8.	If binary trees are represented in arrays, what formula can be used to locate a right	
°.	child, if the node has an index i? (Assume array indexing starts with 0)	
Option A:	child, if the node has an index if (Assume array indexing starts with 0) 2i-1	
Option B:	2i+1	
Option C:	2i+1 2i+2	
Option D:	2i-2 2i-2	
Срион Б.	AF A	

	<u> </u>
9.	What are the number of edges present in a complete graph having n vertices?
Option A:	(n+1)/2
Option B:	(n-1)/2
Option C:	(n*(n-1))/2
Option D:	(n*(n+1))/2
10.	What is the balance factor of the node 78 in the given tree?
	55 78 28 47 89 11
Option A:	1
Option B:	-1
Option C:	2
Option D:	-2

Q2	Solve any Four out of Six	5 marks each
(20 Marks)		
A	Explain Linear and Non-linear data structures with an exar	nple.
В	Write a C function for insertion of a node to the immediate right of the Key node in a doubly linked list.	
C	Write a program to reverse a string using stack.	
D	Why Circular queue is better than Linear Queue. Justify your answer with proper example.	
Consider the given directed acyclic graph. Sort the nodes by applying topological sort on the graph. E A B F G		applying
F	Create an expression tree for the following expressions. i) A + B * C/D - E ii) (3x+5)(6x-4)	

Q3	Solve any Two Questions out of Three 10 marks each
(20 Marks)	
A	Consider a list that stores information about Employees where each node contains Employee Id, Employee Name and Salary. Write a C program to perform following operations on singly linked list: i) Create a singly linked list by inserting nodes at the beginning ii) Delete all nodes whose salary matches the given salary
В	Write a program in C to evaluate a given postfix expression. Show the simulation using stack for the following expression: 642+5*+8-
С	How does the AVL tree differ from Binary Search Tree? Show the result of inserting 15, 19, 22, 10, 3, 37, 25, 12, 13 one at a time into an initially empty AVL Tree.

Q4	
(20 Marks)	
A	Solve any Two 5 marks each
į,	Write a program to add the values of the nodes of a linked list, Calculate the
	mean and display the result.
ii.	For the following graph, Show all the steps of the Depth First Search traversal
	starting with vertex 1.
	7 3 2 6 1
iii.	Write functions Insert_Front and Delete_Rear to insert and delete element from Double Ended Queue using array.
В	Solve any One 10 marks each
i,	Using Linear Probing and modulo division method, hash the following elements
· •	into a table of size 11.
	45,8, 33, 85, 61, 10, 48, 76, 59
ii.	Create a B tree of order 3 for the following data arriving in sequence:
<u></u> .	90, 27, 7, 9, 18, 21, 3, 16, 11
	70, 21, 1, 2, 10, 21, 2, 10, 11

6. Please Upload complete scanned answer copy in a single PDF file. *

Files submitted:

7.	Have you uploaded correct scanned copy of the answer sheets. *
	Mark only one oval.
	YES

UOM Exam Second half 2021_Question paper_R2019/CSC304 - DLCA /Sem-III / COMPUTER ENGINEERING

Dear Student,

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration

	of the exam.
*	Required
1.	Email *
2.	Student Name (As per exam form filled) *
3.	Seat No * Refer Hall ticket
4.	Class * Mark only one oval.
	SE3 SE4 SE9

Solve Questions as per the instructions given separately.

- Please upload a single PDF for Q1 to Q4
- For MCQs Question write Question number & correct option with complete text in option.
- Q2 to Q4 are subjective questions Solve Questions as per the instructions and marks allotted.

Page 1/3

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
What is the primary motivation for using Boolean algebra to simple	
expressions?	
Option A:	It may make it easier to understand the overall function of the circuit.
Option B:	It may reduce the number of gates.
Option C:	It may reduce the number of inputs required.
Option D:	All of the above
Ориоп Б.	All of the accide
2.	The given hexadecimal number (1E.53)16 is equivalent to
Option A:	(35.684)8
Option B:	(36.246)8
Option C:	(34.340)8
Option D:	(35.599)8
Opubli D.	(33.377)0
3.	In restoring division algorithm, after performing operations
] 3.	(1) left shift operation on A,Q and
	(2) A=A-M, if sign of A is positive?
Option A:	00=0, A=A+M
Option B:	A=A+M
Option C:	Q0=1
Option D:	A=A-M
Opnon D.	A=A-IVI
4.	In Booth's multiplication algorithm, if Q0=1 and Q-1=1 then it will perform
٦.	which operation,
Option A:	A=A-M
Option B:	A=A+M
Option C:	
Option D:	Arithmetic right shift of A, Q and Q-1 A=M-A
Орион Б.	N=NI-V
5.	II In a system the contents of PC, Base register, Register R0, and Register R1 has
J	contents 60, 100, 10, and 20 respectively. Content of R1 is used as the
	displacement value. What is the effective address computed using the Base
	addressing and the Relative-Base addressing modes, respectively?
Option A:	120, 80
Option B:	110, 120
Option C:	120, 160
Option D:	120, 180

6.	A J-K flip-flop with J=1 and K=1 has a 20 KHz clock input. The Q output is
Option A: Constantly LOW	
Option B:	Constantly HIGH
Option C:	A 20 KHz square wave
Option D:	A 10 KHz square wave
7.	Which is the simplest method of implementing hardwired control unit?
Option A:	State Table Method
Option B:	Delay Element Method
Option C:	Sequence Counter Method
Option D:	Using Circuits
_	
8.	Highly encoded schemes that use compact codes to specify a small number of
	functions in each micro instruction is
Option A:	Horizontal organization
Option B:	Vertical organization
Option C:	Diagonal organization
Option D:	Complex microinstruction organization
-	
9.	Which of the following statement is TRUE?
Option A:	A direct mapped cache has higher hit time than a 4-way set associative cache with
-	same of number of sets.
Option B:	Two 4 KB caches of same block size, but with different associativity will always
1	have same hit rate.
Option C:	A set associative cache has lower number of conflict misses than a direct mapped
	cache of same size.
Option D:	During a cache miss, there will be block replacements in a fully associative cache
-	if at least one of the cache location is empty.
10.	Which of the following statement is false with respect to instruction pipeline?
Option A:	Pipelining can increase the throughput of a system.
Option B:	Pipelining partitions the system into multiple independent stages with added
-	buffers between the stages.
Option C:	Pipelining reduce the latency of each individual instruction.
Option D:	Unbalanced lengths of pipeline stages reduces overall speedup.

Q.2	Sol	ve any Two Questions out of Three.	
	A)	Perform the following-	10
		i) Convert (340) 10 to excess-3 code.	
		ii) Convert Hexadecimal to decimal: DADA	
		iii) Draw OR gate using NAND gate.	
		iv) Hexadecimal to binary conversion: 3A9D.A0C	
		v) Represent (52)10 into Gray code.	
	B)	Draw flow chart for non-restoring division algorithm and perform the division	10
		operation 11/3 using non-restoring division algorithm.	
	ŋ	Design a full adder using half adder and additional gates. Give its Boolean	10
		expression for Sum and Carry and truth table.	
Q.3	Sal	ve any Two Questions out of Three.	
Ų.J	301	• •	
	A)	With suitable steps convert decimal number 39887.5625 to IEEE 64-bit	10
		Double precision floatingpoint representation.	
	B)	With the help of diagram explain in brief: functioning of Micro programmed	10
		Control Unit.	
	ŋ	What is Cache Mem ory? A 32-bit computer has a 32 bit mem ory address. It	10
		has 8kB of cache memory. The computer follows four-way set associative	
		mapping. Each line size is 16 bytes. Show the memory address form at and cache memory organization.	
Q.4	Sol	ve any Two Questions out of Three.	
	A)	What is Pipeline Hazard? Give the types of pipeline hazards. Write a	10
		difference between delayed branch and branch prediction.	
	B)	With suitable diagram, explain the Flynn Classification of Computer	10
		organization.	
	Ŋ	Write a short note on Interleaved and Associative Memory.	10

6. Please Upload complete scanned answer copy in a single PDF file. *

Files submitted:

/.	Have you uploaded correct scanned copy of the answer sheets. *
	Mark only one oval.
	YES

UOM Exam Second half 2021_Question paper_R2019/CSC302 - Discrete Structures and Graph Theory /Sem-III / COMPUTER ENGINEERING

Dear Student,

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format only.
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration of the exam.

* F	Required
	Email *
•	Student Name (As per exam form filled) *
	Seat No *

4.	Class *		
	Mark only one oval.		
	SE-3		
	SE-4		
	SE-9		
5.	Roll number *		
	olve Questions as per the structions given separately.	 Please upload a single PDF for Q1 to Q4 For MCQs Question write Question number & correct option with complete text in option. Q2 to Q4 are subjective questions - Solve Questions as per the instructions and marks allotted. 	

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	How many subsets can be created for set $A = \{a,b,c,d\}$	
Option A: 8		
Option B:	12	
Option C:	16	
Option D:	20	
2.	Let p be "John is happy" and q be "John is rich". Write the following in symbolic form. "John is poor but happy"	
Option A:	~p^q	
Option B:	~p V ~q	
Option C:	~p∇(p^~q)	
Option D:	~q^p	
3.	Let $R = \{[(1,2)(1,3),(3,1),(1,1),(3,3),(3,2),(1,4),(3,4),(4,2)]\}$, determine which property is satisfied by above relation?	
Option A:	Reflexive	
Option B:	Symmetric	
Option C:	Transitive	
Option D:	Equivalence	
4.	Given the following statements pick the one that a tautology?	
Option A:	$\sim p \rightarrow (q \rightarrow p)$	
Option B:	(p ^ q)→ p	
Option C:	p^~q	
Option D:	q →~p	
5.	Planner graph is a graph in which	
Option A:	Two edges of the graph intersect.	
Option B:	No two edges of the graph intersect.	
Option C:	All the edges of the graph intersect.	
Option D:	Some edges of the graph intersect.	
6.	Group has following Properties	
Option A:	Closure Associative, Inverse, Identity	
Option B:	Closure, Associative, Identity, Commutative	
Option C:	Closure, Associative, Identity, Commutative Closure, Associative, Identity, Inverse	
Option D:	Closure, Associative, Identity element, Inverse element, Commutative	
Priorie.	Crosure, Associative, rudning element, inverse element, commutative	

7.	The transitive closure of the relation $R=\{(1,2),(2,3),(3,4)(5,4)\}$ on set
	A={1,2,3,4,5} is
Option A:	{(1,2),(2,3),(3,4),(5,4),(1,3)}
Option B:	{(1,2),(2,3),(3,4),(5,4),(1,3),(1,4),(2,4)}
Option C:	$\{(1,2),(2,3),(3,4),(5,4),(1,3),(1,4)\}$
Option D:	$\{(1,2),(2,3),(3,4),(4,5),(1,3),(1,4)\}$
8.	A is a semi group (A,*) that has an identity element.
Option A:	Cyclic group
Option B:	Lattice
Option C:	Poset
Option D:	Monoid
9.	K11 is a complete graph of 11 vertices and will have edges.
Option A:	45
Option B:	54
Option C:	55
Option D:	42
10.	What is the identity element In the group $G = \{0, 1, 2, 3, 4, 5\}$ under addition
	modulo 6?
Option A:	0
Option B:	1
Option C:	5
Option D:	4

Q2	
A	Solve any Two [5 marks each]
i.	Let $A = \{[1, 2, 3, 4, 5, 6, 7\}]$ and $R = \{(a, b) \mid a-b \text{ is divisible by 3}\}$. Show that R is an equivalence relation.
ii.	Prove that the set Z of all integers with binary operation * defined by a*b=a+b+1
	for all a, b belonging to G is an Abelian group.
iii.	Obtain the Conjunctive Normal Form of (x^y) V (~x^y)
В	Solve any One [10 marks each]
i.	Let D72 be the poset consisting of all the positive divisors of 72
	under the partial order of divisibility.
	(a) Write down the elements of D72?
	(b) Draw the Hasse Diagram of D72.
	(c) Define Lattice. Is D72 a lattice? Give a reason for your answer
ii.	·
	Define and give examples of injective surjective and bijective functions.
	Check the injectivity and surjectivity of the following function
	$f: N \rightarrow N$ given by $f(x)=x^2$

Q3	
A	Solve any Two [5 marks each]
i.	Consider the following digraph and find transitive closure using Warshall's algorithm.
ii.	Find the generating function for the following sequences i) $\{1, 1, 1, 1, 1, 1, \dots\}$
iii.	ii) {1,2,3,4,} Prove using Mathematical induction 1+3+5++(2k-1)=k ² is true.
В	Solve any One [10 marks each]
i.	Define Isomorphic Graph. Draw K6 and K3, 3 graphs. Find whether they are Isomorphic or not?
ii.	Consider G = {1, 3, 5, 7} under the multiplication modulo 8. i) Find multiplication table of G. ii)Find 3 ⁻¹ ,5 ⁻¹ ,7 ⁻¹ iii) Is G cyclic Group?

Q4.	· · · · · · · · · · · · · · · · · · ·
A	Solve any Two [5 marks each]
į. ii.	Define Existential and Universal Quantifier. Let K(x): "x is a two-wheeler." L(x): "x is a scooter", M(x): "x is manufactured by Bajaj". Express the following using Quantifiers: i) Every two-wheeler is a scooter ii) There is a two-wheeler that is not manufactured by Bajaj. iii) Every two- wheeler that is a scooter is manufactured by Bajaj. How many numbers between 1 and 500 are divisible by 3 or 5 or 7.
iii.	Define Euler Path and Euler Circuit. Check whether Euler Path, Euler Circuit exist in the following graphs.
	G1 G2
В	Solve any One [10 marks each]
i.	Consider the set Q of rational numbers, and let '*' be the operation on Q defined by a * b = a+b-ab. i) Find 2 * 4, 5 * (-4) ii) Show that (Q, *) is a semigroup. iii) I sit commutative?
ii	Give the examples of relation R on A = {1, 2, 3} having stated property. i) R is transitive but not symmetric ii) R is symmetric but not transitive iii) R is both symmetric and antisymmetric iv) R is neither symmetric nor antisymmetric. v) R is equivalence

6. Please Upload complete scanned answer copy in a single PDF file. *

Files submitted:

/.	Have you uploaded correct scanned copy of the answer sheets. *
	Mark only one oval.
	YES

UOM Exam Second half 2021_Question paper_R2019/CSC301 - Engineering Mathematics III /Sem-III / COMPUTER ENGINEERING

Dear Student,

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format only.
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration of the exam.

	of the exam.
*	Required
1.	Email *
2.	Student Name (As per exam form filled) *
3.	Seat No *
.	Refer Hall ticket

4.	Class *	
	Mark only one oval.	
	SE3 SE4 SE9	
5.	Roll No. *	
	olve Questions as per the structions given separately.	 - Please upload a single PDF for Q1 to Q4 - For MCQs Question write Question number & correct option with complete text in option. - Q2 to Q4 are subjective questions - Solve Questions as per the instructions and marks allotted.

Q 1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
	2 marks each
1.	Laplace transform of $e^{-5t}(t^2+sin2t)$ is
Option A:	2 2
	$\frac{(s+5)^2}{2} + \frac{(s+5)^2 + 2^2}{2}$
Option B:	$\frac{2}{(s-5)^2} + \frac{2}{(s-5)^2 + 4}$
Option C:	3 1 5
	$(s+5)^2$ $(s+5)^2+2^2$
Option D:	$\frac{\frac{z}{(s-5)^2} + \frac{z}{(s-5)^2 + 4}}{\frac{3}{(s+5)^2} + \frac{s}{(s+5)^2 + 2^2}}$ $\frac{\frac{2}{(s+5)^2} + \frac{2}{(s+5)^2 - 2^2}}{\frac{(s+5)^2 + 2^2}{(s+5)^2 - 2^2}}$
2.	If $L(F(t)) = \frac{3s}{s^2 + 1}$, then $L(F(2t))$ at s=1, is
Option A:	3 5
Option B:	3 5 2 5
Option C:	-3 -5
Option D:	7 5 5 S
	5
3.	Inverse Laplace transform of $\frac{1}{s^2+4}$ is
Option A:	$\int_0^t cos2udu$
Option B:	$\int_{0}^{t} \cos 2u du$ $\int_{0}^{t} \sin 2u du$
Option C:	$\int_{0}^{t} cos3udu$
Option D:	$\int_0^t cosudu$

4.	Inverse Laplace transform of $f(s) = \frac{6e^{-5s}}{(s+2)^4} is$
Option A:	$f(t) = \begin{cases} 0 & 0 < t < 5 \\ e^{-2(t-5)}(t-5)^2 & t > 5 \end{cases}$ $f(t) = \begin{cases} 0 & 0 < t < 5 \\ e^{-2(t-5)}(t-5)^4 & t > 5 \end{cases}$
Option B:	$f(t) = \begin{cases} 0 & 0 < t < 5 \\ e^{-2(t-5)}(t-5)^4 & t > 5 \end{cases}$
Option C:	$f(t) = \begin{cases} 0 & t > 5 \\ e^{-zt}t^z & t < 5 \end{cases}$
Option D:	$f(t) = \begin{cases} 0 & 0 < t < 5 \\ e^{-2t}t^5 & t > 5 \end{cases}$
5.	If $f(z) = u(x, y) + iv(x, y)$ is analytic then $f'(z)$ is equal to
Option A:	$\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$
Option B:	$\left \frac{\partial}{\partial x} + i \frac{\partial}{\partial x}\right $
Option C:	$\frac{\partial \hat{u}}{\partial y} + i \frac{\partial v}{\partial x}$
Option D:	$\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$
6.	The value of 'm' so that $2x - x^2 + my^2$ is harmonic, is
Option A:	0
Option B:	-1
Option C:	1
Option D:	3
7.	The value of coefficient of correlation lies between
Option A:	0 to 1
Option B:	-∞ to 1
Option C:	0 to∞
Option D:	-1 to 1

8.	Th				- f - II								
°.	l	correlatio											
	Х	23	25	27	29	31	33						
	Υ	43	45	47	49	51	53						
Option A:	0	_											
Option B:	-1												
Option C:	1												
Option D:	0.99												
	Expansion of Equation parison of $f(y) = y$ in $f(x) = y$												
9.	Expansio	Expansion of Fourier series of $f(x)=x$ in (-1, 1) is											
Option A:													
-	f(x) =	$f(x) = \sum_{n=1}^{\infty} \frac{2}{n\pi} (-1)^n \sin n\pi x$											
	n=	1											
Option B:	2.	$2\sum_{n=0}^{\infty} (-1)^{n+1}$											
	$\int (x) = -\pi$	$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx$											
Option C:	- 4	m=1											
opmon o	f(x) =	$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n\pi x$											
	7												
Option D:	$f(x) = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} \sin n\pi x$												
	$f(x) = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{1}{n} \sin n\pi x$												
	n=1												
10.	Whatwo	uld be the	e expectat	ion of the	number	of failure	s preceding						
	1		•										
	1	the first success in an infinite series of independent trials with the constant probability of success p and failure q											
	constant	probabili	ty of succ	ess p and	tailure q								
Option A:				$\frac{p}{}$									
				q									
Option B:				<u>q</u>									
				\overline{p}									
Option C:				$\frac{1}{p+1}$									
Option D:				$\frac{q}{n^2}$									
J. J				$\frac{p^2}{q^2}$									
				q²									

Q 2.	Solve any	Four	out o	f Six				5 marks each				
A	Find Lap	Find Laplace transform of $e^{-3t}t\sqrt{1-sin2t}$										
В	Find inv	Find inverse Laplace transforms of $\frac{5s^2-15s-11}{(s+1)(s-2)^2}$ Expand Fourier Series for $f(x) = \frac{1}{2}(\pi - x) \operatorname{in}_{\infty}(0,2\pi)$.										
С	Expand I	Fouri	er Ser	ies fo	r <i>f(x</i>)	$=\frac{1}{2}$	$\pi - x$) <u>in</u> (0	$(,2\pi).$			
D	(ax^4+b)	Find constants a, b, c, d and e, if $(ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy)$ is analytic.										
E	Ten students got the following percentage of marks in mathematic and statistics Maths 78 36 98 25 75 82 90 62 65 39 Stats 84 51 91 60 68 62 86 58 53 47 Calculate the coefficient of correlation.							39				
F	A bolt is twice as number 5% of bo stock pill that it is	man of it olts p e and	y time ems . roduc d one	es as I 3% o ced by is cho	3, and fbolts Care	mach produ defec	ines B uced b tive. 7	and (y A an All bol	C prod id B ar ts are	uce e e defe put in	qual ective and to one	

Q. 3		-	out of Six					5 m	arks each		
A	By using Laplace transform, evaluate $\int_0^\infty \frac{\sin 2t + \sin 3t}{t e^t}$										
В	By using Convolution theorem, find inverse Laplace transform of $\frac{s}{(s^2+1)(s^2+4)}$										
С	Expar	Expand Fourier Series for f(x) =1- x2 in (-1, 1)									
D	Find the analytic function $f(z) = u + iv$, in terms of z, if $v = \frac{\sinh 2y}{\cosh 2y + \cos 2x}$										
	Obtain the equations of the lines of regression for the following data.										
E	Х	65	66	67	67		69	70	72		
	Y	67	68	65	68	72	72	69	71		
	Arano	lom var	iahla Y I	nas tha	following	ı nrohah	ilitydie	etributi	on		
	Arano	X	-2	-1	0	1	2	3			
F		P	0.1	К	0.1	2K	0.2	3К			
	(i) Find	d the cor	nstant K.	(ii) Fi	nd the m	rean and	 varia	nce of X	Κ.		

Q. 4	Solve any 1	Four out of Six					5 marks	each				
A	Find Lapl	Find Laplace transform of $\int_{0}^{t} e^{-2u} \cos^{2} u du$										
В	Find Inve	Find Inverse Laplace transform of $\frac{1}{s} \log \sqrt{\frac{s^2 + 9}{s^2 + 16}}$										
С	Find the h	alf range cos	sine serie	s for f (x	= (x-1)	²; 0< x <	1					
	Find the family of curves orthogonal to the family of curves											
D	$x^3y - xy^3 = c$											
	Fit a straight line of the form y=a+bx to the following data											
E	X	1	3	5	7	8	10					
	Υ	8	12	15	17	18	20					
	A random variable x has probability density function											
\mathbf{F}		f(x) =	$= \begin{cases} kx^2e^2 \\ 0 \end{cases}$	-x $x >$	> 0,	k > 0						
	 Ein d (1/2					wise						
	Find K. ar	nd hence <u>finc</u>	<u>i mean</u> ai	na variar	ice.							

- 6. Please Upload complete scanned answer copy in a single PDF file. *
 Files submitted:
- 7. Have you uploaded correct scanned copy of the answer sheets. *

 Mark only one oval.

YES

This content is neither created nor endorsed by Google.