UOM Exam Second half 2021_Question paper_R2016/Comp/CSC301 - AM-III/Sem-III

Dear Student,

Please note before you attempt this section of examination:

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format only.
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration of the exam.

*	Required
1.	Email *
2.	Student Name (As per exam form filled) *
3.	Seat No *
	Refer Hall ticket

Solve Questions as per the instructions given separately.

- Please upload a single PDF for Q1 to Q4
- For MCQs Question write Question number & correct option with complete text in option.
- Q2 to Q4 are subjective questions Solve Questions as per the instructions and marks allotted.

Q1.	Choose the correct option for following questions. All the Questions are			
	compulsory and carry equal marks			
1.	The fixed points of the bilinear transformation $w = \frac{2(s-1)}{(1+i)s-2}$ are			
Option A:	both im a ginary num bers			
Option B:	both real irrational numbers			
Option C:	both real and equal numbers			
Option D:	both real rational num bers			
2.	Spearman's rank correlation coefficient for the data:			
	Rankin 1 3 7 5 4 6 2 10 9 8			
	Maths			
	Rank in 3 1 4 5 6 9 7 8 10 2			
	Stats			
Oution A.	is equal to 0.4118			
Option A: Option B:	0.1481			
Option C:	0.4181			
Option D:	0.1841			
opusit 5.	0.10 12			
3.	T1			
	The coefficient of $\frac{1}{z^4}$ in the z-transform of a sequence $\{-6, -3, -1, 0, 2, 4, 6, 8, 6, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$			
Option A:	0			
Option B:	6			
Option C:	8			
Option D:	•			
4.	r (
<u> </u>	$L\left\{sintH(t-\frac{1}{2})\right\}=$			
Option A:	$\frac{\cos\frac{1}{2} - \sin\frac{1}{2}}{e^{-\frac{1}{2}s}}$			
	$\frac{2}{s^2+1}$ $\theta^{\frac{-2}{s}}$			
Option B:				
*	$\cos \frac{1}{2} + s \sin \frac{1}{2} \frac{1}{1-s}$			
	$\frac{1}{s^2+1}$			
Option C:	1 . 1			
-	$\cos\frac{1}{2} - s\sin\frac{1}{2} \frac{1}{a^2s}$			
	$\frac{1}{s^2+1}$			
Option D:	$\frac{\cos\frac{1}{2} + \sin\frac{1}{2}}{\cos\frac{1}{2}} = \frac{-1}{2}$			
	$\left \frac{2}{s^2+1}\right ^2 \theta^{2}$			
<u> </u>	 			

5.	In the complex form of Fourier series of $f(x) = x$, $(0, \pi)$ the value of C_2 is
Option A:	$\frac{\iota}{4}$
Option B:	$\frac{i}{2}$
Option C:	$\frac{-i}{2}$
Option D:	i
6.	If $f(t) = L^{-1} \left\{ \frac{1}{s^2 + 2s + 5} \right\}$ then $f(0) =$
Option A:	0
Option B:	1
Option C:	0.5
Option D:	2
_	
7.	The coefficient of cos3t in the Fourier series expansion of $f(t)=3t-2t^3$ in the interval $(-\pi,\pi)$ is
Option A:	$\frac{1}{3}$
Option B:	$\frac{1}{2}$
Option C:	0
Option D:	1
8.	$L^{-1}\left\{\frac{1}{s(s-1)^2}\right\} is$
Option A:	$te^{t} + e^{t} + 1$
Option B:	te ^t - e ^t -1
	te ^t + e ^t -1
Option D:	

9.	The image of the interior part unit circle in z-plane onto the w-plane under the transformation $w = \frac{i-z}{z+i}$ is			
Option A:	Entire half of the w- plane to the right of imaginary axis			
Option B:	Entire half of the w- plane to the left of imaginary axis			
Option C:	Exterior part of the unit circle in w-plane			
Option D:	Interior part of the unit circle in w-plane			
10.	Evaluate using Laplace transform: $\int_0^\infty e^{-t} \int_0^t e^{-2u} cos^2 u \ du \ dt$			
Option A:	7 15			
Option B:	11 39			
Option C:	$\frac{-2}{39}$			
Option D:	$\frac{2}{15}$			

Q2	Solve any Four out of Six 5 marks each
A	Find Laplace transform of $L\{f(t)\}$ Where $\underline{f}(t) = t$, $0 < t < 1$ and $f(t)$ is periodic function with period 1.
A	where mid-t, or tell and itthis periodic runction with period 1.
В	Obtain Fourier series for $f(x) = 16 - x^2$ in (-1,1).
С	Show that $u=e^x \cos y - x^2 + y^2$ is harmonic and find the corresponding analytic function $f(z)=u+iv$
D	Find the equations of two regression lines using the following data: $\bar{x}=23, \bar{y}=35, \sigma_x=2, \sigma_y=3, r_{xy}=0.6$ Also estimate y when x=20 and x when y=38
E	Find $L^{-1}\left\{\frac{s+3}{(s^2+6s+13)^2}\right\}$ using convolution theorem
F	Find Z-transform of $f(k) = \frac{3^k}{k!}$, $k > 0$
_	

Q3	Solve any Four out of Six					5 marks each		
A	Using Laplace Transform evaluate the following integral $\int_0^\infty e^{-2t} \ \frac{\sin 3t \cos 2t}{t} \ dt$							
В	Prove that the set 1, <u>sinx</u> , <u>cosx</u> , sin2x, cos2x, <u>sin3x</u> , <u>is orthogonal</u> on (0, 2π).							
С	If $f(z)=a^2x^2y-c^2y^3+2x^2-2y^2+i(b^2xy-x^3+3xy^2)$ is analytic, find the possible values of unknown constants a,b , and c .							
D	Find the Karl-Pearson's coefficient of correlation for the following data:							
	X	120	125	127	130	134	137	
	Y	42	47	48	46	50	49	
E								
	Solve using Laplace transform: $(D^2+2D-3)y = sint$, where $D = \frac{d}{dt}$ given : $y(0) = 0$, $y'(0) = 0$							
F	Find $Z^{-1}\left\{\frac{1}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{2}\right)}\right\}, z > \frac{1}{2}$							

Page 6/6

Q4	Solve any Four out of Six 5 marks each
A	Find Laplace transform of L{t²cost}
В	Find half range sine series for the function $f(x) = \begin{cases} \left(\frac{1}{4}\right) - x, & 0 < x < \left(\frac{1}{2}\right) \\ x - \left(\frac{3}{4}\right), & \left(\frac{1}{2}\right) < x < 1 \end{cases}$
С	Find the image of the infinite strip $\frac{1}{6} \le y < \frac{1}{4}$ under the transformation $w = \frac{1}{2}$. Show the regions graphically.
D	The equations of the two regression lines are $3x + 2y = 26$ and $6x + y = 31$
E	Find i)Means of x and y, ii) r, and iii) σ_y when $\sigma_x = 3$ Find $L^{-1}\left\{\frac{1}{s^2(s+3)^2}\right\}$ using partial fraction method.
F	Find Z-transform of $f(k) = \cos\left(\frac{k\pi}{7} - \alpha\right)$, $k \ge 0$

- 4. Please Upload complete scanned answer copy in a single PDF file. * Files submitted:
- 5. Have you uploaded correct scanned copy of the answer sheets. *

 Mark only one oval.

() YES

This content is neither created nor endorsed by Google.