University of Mumbai Examination 2020 under cluster __(Lead College: ____) Examinations Commencing from 15^h June to 26th June 2021 Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III(for Direct Second Year-DSE) Course Code: CSC304 Course Name: Digital Logic & Computer Organization and Architecture

Time: 2 hour

Max. Marks: 80

Question	Correct Option (Enter either 'A' or 'B'
Number	or 'C' or 'D')
Q1.	В
Q2.	С
Q3.	С
Q4	В
Q5	D
Q6	С
Q7	С
Q8.	В
Q9.	D
Q10.	В
Q11.	А
Q12.	С
Q13.	С
Q14.	В
Q15.	А
Q16.	С
Q17.	С
Q18.	С
Q19.	D
Q20.	В

Examination 2020 under cluster (Lead College:

Examinations Commencing from 15^h June to 26th June 2021 Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III(for Direct Second Year-DSE) Course Code: CSC304 Course Name: Digital Logic & Computer Organization and Architecture Max. Marks: 80

Time: 2 hour

1. What is the Function of MAR Option A: Read/write a word form memory Option D: Specify an address of memory Option D: Store address of next instruction 2. What is does the Instruction Register holds Option A: It Holds the Address of the Current Instruction Option B: It Holds the Address of the Next Instruction Option D: It Holds the Address of the Next Instruction Option D: It Holds the Current Instruction Option D: It Holds the Next Instruction Option D: It Holds the Next Instruction Option D: It Holds the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option B: 11100001 Option C: 11100011 4. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 Option A: Q0 =0 Option A: Q0 =0	Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1. What is the Function of MAR Option A: Read/write a word form memory Option B: Specify an address of memory Option D: Contains the 8 bit opcode Option D: Store address of next instruction 2. What is does the Instruction Register holds Option A: It Holds the Address of the Current Instruction Option B: It Holds the Address of the Next Instruction Option C: It Holds the Address of the Next Instruction Option D: It Holds the Next Instruction Option D: It Holds the Next Instruction Option A: 00011110 Option A: 00011110 Option A: 00011110 Option B: 11100001 Option D: 11100001 Option A: 100001111001 x 2 raise to -8 Option A: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 Option A: In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as		
Option A:Read/write a word form memoryOption B:Specify an address of memoryOption C:Contains the 8 bit opcodeOption D:Store address of next instruction2.What is does the Instruction Register holdsOption A:It Holds the Address of the Current InstructionOption B:It Holds the Address of the Next InstructionOption C:It Holds the Address of the Next InstructionOption C:It Holds the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6Option B:11100001Option D:11100001Option D:11100010Option A:000111100Option A:1.00001111001 x 2 raise to -8Option B:1.00001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 9Option D:0.00001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 9Option D:0.00001111001 x 2 raise to 9Option D:0.00001111001 x 2 raise to 9Option D:0.00001111001 x 2 raise to 9Option D:0.00000000000000000000000000000000000	1.	What is the Function of MAR
Option B:Specify an address of memoryOption C:Contains the 8 bit opcodeOption D:Store address of next instruction2.What is does the Instruction Register holdsOption A:It Holds the Address of the Current InstructionOption B:It Holds the Address of the Next InstructionOption C:It Holds the Current InstructionOption D:It Holds the Next InstructionOption D:It Holds the Next InstructionOption D:It Holds the Next Instruction3.What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6Option A:00011110Option D:11100001Option D:11100001Option A:1.0000111001 xOption A:1.00001111001 x 2 raise to -8Option B:1.00001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 9Option D:0.00001111001 x 2 raise to 9Option D:0.00000000000000000000000000000000000	Option A:	Read/write a word form memory
Option C: Contains the 8 bit opcode Option D: Store address of next instruction 2. What is does the Instruction Register holds Option A: It Holds the Address of the Current Instruction Option B: It Holds the Address of the Next Instruction Option D: It Holds the Current Instruction Option D: It Holds the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option D: 11100001 Option D: 11100010 Option D: 11100011 Option D: 100001111001 x 2 raise to -8 Option A: 1.00001111001 x 2 raise to -8 Option D: 1.00001111001 x 2 raise to 9 Option D: 0.00000000000000000000000000000000000	Option B:	Specify an address of memory
Option D: Store address of next instruction 2. What is does the Instruction Register holds Option A: It Holds the Address of the Current Instruction Option B: It Holds the Address of the Next Instruction Option D: It Holds the Current Instruction Option D: It Holds the Next Instruction Option D: It Holds the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option D: 11100001 Option D: 11100010 Option D: 11100011 4. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)	Option C:	Contains the 8 bit opcode
 2. What is does the Instruction Register holds Option A: It Holds the Address of the Current Instruction Option B: It Holds the Address of the Next Instruction Option D: It Holds the Current Instruction Option D: It Holds the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option B: 11100001 Option D: 11100001 Option D: 11100001 Option D: 11100011 A. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 Option A: Q0 = 0 Option D: Q0 = 0 & A=A+M Option D: Q0 = 0 & A=A+M Option A: The output is Complement of Input <	Option D:	Store address of next instruction
 2. What is does the Instruction Register holds Option A: It Holds the Address of the Current Instruction Option B: It Holds the Address of the Next Instruction Option C: It Holds the Current Instruction Option D: It Holds the Next Instruction 3. What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option B: 11100001 Option D: 11100010 Option D: 11100011 Option A: 10001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to -8 Option D: 1.00001111001 x 2 raise to 9 Option A: 00 =0 Option A: 00 =0 Option A: 00 =0 Option B: A= A+M Option C: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M Option A: The output is Complement of Input 		
Option A: It Holds the Address of the Current Instruction Option B: It Holds the Address of the Next Instruction Option C: It Holds the Current Instruction Option D: It Holds the Next Instruction 3. What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option D: 11100001 Option D: 11100001 Option D: 11100010 Option A: 10001111001 x Option B: 1.00001111001 x In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)	2.	What is does the Instruction Register holds
Option B: It Holds the Address of the Next Instruction Option C: It Holds the Current Instruction Option D: It Holds the Next Instruction 3. What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option B: 11100001 Option D: 11100001 Option D: 11100010 Option D: 11100011 4. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 9 Option D: Q0 =0 Q0 Q0 Q0 Q0 Q0	Option A:	It Holds the Address of the Current Instruction
Option C: It Holds the Current Instruction Option D: It Holds the Next Instruction 3. What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option B: 11100001 Option D: 11100010 Option A: 0001111001 Option A: 1100001 Option B: 1100001 Option A: 100001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 9 Quiton D: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 0 1.00001111001 x 2 raise to 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Option B:	It Holds the Address of the Next Instruction
Option D: It Holds the Next Instruction 3. What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option B: 11100001 Option C: 11100010 Option D: 11100011 4. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 Option A: Q0 =0 Option A: Q0 =0 Option A: Q0 =0 Option B: A= A +M Option D: <td>Option C:</td> <td>It Holds the Current Instruction</td>	Option C:	It Holds the Current Instruction
3.What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6Option A:00011110Option B:11100001Option C:11100010Option D:111000114.The normalized form of 100001111.001 isOption A:1.00001111001 x 2 raise to -8Option B:1.00001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 96.Which of the following statement is true about D-Flip FlopOption A:The output is Complement of Input	Option D:	It Holds the Next Instruction
 3. What will be the Value stored in Register A & Q of Booths Algorithm if we multiply 5 & -6 Option A: 00011110 Option B: 11100001 Option C: 11100010 Option D: 11100011 4. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 8 Option C: 0.100001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result) Option A: Q0 =0 Option B: A= A +M Option C: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M Option D: Q0 =0 & A=A+M The output is Complement of Input 		
multiply 5 & -6Option A:00011110Option B:11100001Option C:11100010Option D:111000114.The normalized form of 100001111.001 isOption A:1.00001111001 x 2 raise to -8Option B:1.00001111001 x 2 raise to 8Option C:0.100001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 95.In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)Option B:A= A +MOption C:Q0 =0 & A=A+MOption C:Q0 =0 & A=A+MOption A:Q0 =0 & A=A+MOption A:The output is Complement of Input	3.	What will be the Value stored in Register A & Q of Booths Algorithm if we
Option A:00011110Option B:11100001Option C:11100010Option D:111000114.The normalized form of 100001111.001 isOption A:1.00001111001 x 2 raise to -8Option B:1.00001111001 x 2 raise to 8Option C:0.100001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 96.Which of the following statement is true about D-Flip FlopOption A:The output is Complement of Input		multiply 5 & -6
Option B:11100001Option C:11100010Option D:111000114.The normalized form of 100001111.001 isOption A:1.00001111001 x 2 raise to -8Option B:1.00001111001 x 2 raise to 8Option C:0.100001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 9Diftion D:1.00001111001 x 2 raise to 90ption D:1.00001111001 x 2 raise to 90ption D:0.00001111001 x 2 raise to 90ption D:0.00001111001 x 2 raise to 90ption D:0.00001111001 x 2 raise to 90ption A:Q0 =00ption A:Q0 =00ption B: $A = A + M$ Option C:Q0 =0 & A=A-MOption D:Q0 =0 & A=A+M0ption D:Q0 =0 & A=A+M0ption D:Q0 =0 & A=A+M0ption A:The output is Complement of Input	Option A:	00011110
Option C:11100010Option D:111000114.The normalized form of 100001111.001 isOption A:1.00001111001 x 2 raise to -8Option B:1.00001111001 x 2 raise to 9Option C:0.100001111001 x 2 raise to 9Option D:1.00001111001 x 2 raise to 95.In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)Option A:Q0 =0Option B:A= A +MOption C:Q0 =0 & A=A-MOption D:Q0 =0 & A=A+MOption D:Q0 =0 & A=A+MOption D:Q0 =0 & Complement is true about D-Flip FlopOption A:The output is Complement of Input	Option B:	11100001
Option D: 11100011 4. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 8 Option C: 0.100001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)	Option C:	11100010
4.The normalized form of 100001111.001 isOption A: 1.00001111001×2 raise to -8 Option B: 1.00001111001×2 raise to 8 Option C: 0.100001111001×2 raise to 9 Option D: 1.00001111001×2 raise to 9 5.In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)Option A:Q0 =0Option B:A= A +MOption C:Q0 =0 & A=A-MOption D:Q0 =0 & A=A+MOption D:Q0 =0 & A=A+MOption A:The output is Complement of Input	Option D:	11100011
 4. The normalized form of 100001111.001 is Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 8 Option C: 0.100001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result) Option A: Q0 =0 Option C: Q0 =0 & A=A+M Option D: Q0 =0 & A=A+M Generation A: The output is Complement of Input 		
Option A: 1.00001111001 x 2 raise to -8 Option B: 1.00001111001 x 2 raise to 8 Option C: 0.100001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)	4.	The normalized form of 100001111.001 is
Option B: 1.00001111001 x 2 raise to 8 Option C: 0.100001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)	Option A:	1.00001111001 x 2 raise to -8
Option C: 0. 100001111001 x 2 raise to 9 Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)	Option B:	1.00001111001 x 2 raise to 8
Option D: 1.00001111001 x 2 raise to 9 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result)	Option C:	0. 100001111001 x 2 raise to 9
 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result) Option A: Q0 =0 Option B: A= A +M Option C: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M 6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input 	Option D:	1.00001111001 x 2 raise to 9
 5. In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor And A as result) Option A: Q0 =0 Option B: A = A +M Option C: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M 6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input 		
Immediate step (Assume M as Dividend Q as Divisor And A as result) Option A: Q0 =0 Option B: A= A +M Option C: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M 6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input	5.	In Restoring division Algorithm if A<0 then which of the following is
A as result) Option A: Q0 =0 Option B: A= A +M Option C: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M 6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input		Immediate step (Assume M as Dividend Q as Divisor And
Option A: Q0 =0 Option B: A= A +M Option C: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M 6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input	Ontion A.	A as result)
Option D: Q0 =0 & A=A-M Option D: Q0 =0 & A=A+M 6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input	Option P:	QU = U
Option C. Q0 = 0 & A=A-M Option D: Q0 = 0 & A=A+M 6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input	Option C:	A - A + IVI
6. Which of the following statement is true about D-Flip Flop Option A: The output is Complement of Input	Option D:	$Q_{0} = 0 & A = A = M$
6.Which of the following statement is true about D-Flip FlopOption A:The output is Complement of Input	Option D:	$QU = U \propto A = A + IVI$
Option A: The output is Complement of Input	6	Which of the following statement is true about D-Flip Flop
option ris 1 rue output to comptement of input	Ontion A:	The output is Complement of Input
Option B: The output continues to remain in previous state	Option R:	The output continues to remain in previous state

Option C:	The output Follows the D-Input
Option D:	The output is always high irrespective of D-input
7.	Identify which of the following is not a valid Addressing Mode
Option A:	Register Addressing mode
Option B:	Direct Addressing mode
Option C:	Register Opcode Addressing mode
Option D:	Stack Addressing Mode
^	
8.	State table method is the method for designing
Option A:	Microprogram Control unit
Option B:	Hardwired Control Unit
Option C:	Memory Unit
Option D:	I/O devices
•	
9.	Basic task for control unit is
Option A:	to perform logical operations
Option B:	to perform execution
Option C:	to initiate the resources
Option D:	to decode instructions and generate control signal
10.	The micro instruction MAR <pc executed="" is="" td="" to<=""></pc>
Option A:	fetch the data
Option B:	fetch the instruction
Option C:	Fetch both data and instruction
Option D:	Send control signals
11.	In micro programmed control unit, micro instructions are stored in special
	memory called
Option A:	Control Memory
Option B:	RAM
Option C:	ROM
Option D:	Micro memory
12.	Which of the following is not a key characteristics of memory devices or memory
	system
Option A:	Location
Option B:	Physical Characteristics
Option C:	Availability
Option D:	Access Method
13.	Which is not true about Register memory
Option A:	fastest possible access
Option B:	only hundreds of bytes in size
Option C:	Very Large in Capacity
Option D:	Part of the processor
14.	Cache memory is implemented using
Option A:	Dynamic RAM
Out on D.	Static RAM

Option C:	EPROM
Option D:	PROM
*	
15.	The correspondence between the main memory blocks and those in the cache is
	given by
Option A:	Mapping function
Option B:	Hash function
Option C:	Locale function
Option D:	Assign function
16.	In a Pipelined Processing System The Instruction $A \leftarrow 3 + A$ $B \leftarrow 4 \times A$
	Leads Hazard
Option A:	Resource Hazard
Option B:	Structural Hazard
Option C:	Data Hazard
Option D:	Branch Hazard
17.	In Instruction Pipelining Structural Hazard means
Option A:	any condition in which either the source or the destination operands of an
	instruction are not available at the time expected in the pipeline
Option B:	a delay in the availability of an instruction causes the pipeline to stall
Option C:	the situation when two instructions require the use of a given hardware resource
	at the same time.
Option D:	When a data gets overwritten by branching
18.	Flynn's taxonomy classifies computer architectures based on
Option A:	the number of instructions that can be executed
Option B:	how they operate on data.
Option C:	the number of instructions that can be executed and how they operate on data.
Option D:	The number of Control Signals Generated
10	Identify the Type of Elympic Cleasification of Devellel Processing, shown below
19.	Identify the Type of Flynn's Classification of Parallel Processing shown below
	Instruction Memory Control Unit Processing Unit Data Memory
	Instruction Stream Data Stream
	Instruction Memory Control Unit Processing Unit Data Memory
	Instruction Stream Data Stream
	Instruction Memory Control Unit Processing Unit Data Memory
	Instruction Stream Data Stream
Option A:	SISD
Option B:	SIMD
Option C:	MISD
Option D:	MIMD
- -	
20.	We can expand the processor bus connection by using
Option A:	SCSI bus
Option B:	PCI bus
Option C:	Controllers
Option D:	Multiple bus

Q2 (20 Marks)	Solve any Four out of Six (5 marks each)
А	Differentiate between Computer Organization and Architecture with a example
В	Explain any five addressing Modes with examples
С	Define Instruction cycle. Explain it with a detailed state diagram.
D	Explain Hardwired control unit design method (state table method)
Е	Differentiate between Hardwired control unit and Micro programmed control unit
F	Explain the different types of Bus Arbitration methods.

Q3. (20 Marks)	Solve any Two Questions out of Three (10 marks each)
А	Consider a Cache memory of 16 words. Each block consists of 4 words. Size of the main memory is 128 bytes. Draw the Associative Mapping and Calculate the TAG and WORD size.
В	Draw the flowchart of Restoring Division Algorithm & perform 7 / 3 using this Algorithm
С	Write short note on Flynn's classification

Examination 2020 under cluster __(Lead College: _____)

Examinations Commencing from 15^h June to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	А
Q3.	D
Q4	D
Q5	С
Q6	D
Q7	А
Q8.	D
Q9.	В
Q10.	В
Q11.	С
Q12.	В
Q13.	D
Q14.	С
Q15.	В
Q16.	D
Q17.	С
Q18.	D
Q19.	С
Q20.	В

Note: The distribution of marks the for the descriptive questions is given below for your illustration. Examiners may vary with this and add additional criteria's for evaluation

Q2:

- A. For difference 3 marks and example 2 marks
- B. Von-Neumann Model block diagram 2 marks and explanation 3 marks
- C. For every addressing with block representation or explanation and example allot 1 marks
- D. SR Flip Flop diagram 1 mark truth table 1 mark operation 2 mark and draw back 1 mark
- E. Explanation of hardwired control unit and state table method 4 marks block diagram 1 mark
- F. For every difference allot 1 marks

Q3.

- B. Flow chart and explanation 4 marks for numerical 6 marks.
- C. Introduction to parallel processing and Flynn's classification 2 marks & explanation to each classification with block diagram and example 8 marks(2 marks for each type)

Examination 2020 under cluster __(Lead College: ____

Examinations Commencing from 15^h June to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture

Time: 2 hour

Max. Marks: 80

Q1. 40 marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2marks each)
1.	Convert hexadecimal number (8A9.B4) to binary equivalent.
Option A:	(100010101001.110101)2
Option B:	$(100010101011.101101)_2$
Option C:	$(1000101001.101101)_2$
Option D:	$(1000101001.101011)_2$
•	
2.	Write equivalent binary number for 10101010 gray code
Option A:	11001100
Option B:	10001100
Option C:	11000100
Option D:	11001110
3.	Which of the following the correct expression for two input NOR Gate
Option A:	A + B
Option B:	A . B
Option C:	$\overline{A} + \overline{B}$
Option D:	$\overline{A+B}$
4.	Program Counter Holds
Option A:	The Instruction
Option B:	The Data
Option C:	Address of the Current Instruction which is executed
Option D:	Address of the Next Instruction to be fetched
•	
5.	Perform binary subtraction using 2's complement representation. 23 - 48 (use 8
	bit representation)
Option A:	10001110
Option B:	11110111
Option C:	11100111
Option D:	11001001
6.	Write number (15.5)10 in IEEE754 format
Option A:	41766666H
Option B:	С170000Н
Option C:	41780006Н
Option D:	41780000H

7.	In Booths Algorithm in one of the step the A=0110 Q=1100 $Q_{-1}=0$ and count is
	not zero what it will be the result of Arithmetic Right shift A,Q, Q-1
Option A:	001101100
Option B:	001101101
Option C:	001101110
Option D:	111101100
8.	Perform hexadecimal addition 2F8 + 5A3
Option A:	79B
Option B:	9AB
Option C:	96B
Option D:	89B
9.	Choose correct equation of carry of full adder
Option A:	A OR B AND C _{in} (A XOR B)
Option B:	A AND B OR C _{in} (A XOR B)
Option C:	A AND B AND C _{in}
Option D:	A OR B OR C _{in}
10	
10.	Which method of combination circuit implementation is widely adopted with
Ortion A.	Multiplayer Mathed
Option A:	Deceder Method
Option B:	Decoder Method
Option C:	Encoder Method
Option D.	
11	The addressing mode used in an instruction of the form $\Delta DD \Delta X$ 07h is
11.	addressing mode
Option A.	Direct
Option B:	Indirect
Option C:	Immediate
Option D:	Register
12.	State table method is the method for designing
Option A:	Microprogram Control unit
Option B:	Hardwired Control Unit
Option C:	Memory Unit
Option D:	I/O devices
13.	Basic task for control unit is
Option A:	to perform logical operations
Option B:	to perform execution
Option C:	to initiate the resources
Option D:	to decode instructions and generate control signal
1.4	
14.	which is not true about Register memory
Option A:	Tastest possible access
Option B:	Only nundreds Of bytes in size
Option C:	Large in Capacity

Option D:	Part of the processor		
15.	Cache memory is implemented using	, ,	
Option A:	Dynamic RAM		
Option B:	Static RAM		
Option C:	EPROM		
Option D:	PROM		
16	Match the memory type with respec	tive erasing mechanism used	
10.	white the memory type with respec	live clusing mechanism used	
	Memory Type	Erasing Mechanism	
	1- ROM & PROM	a- Electrically, Byte-level	
	2-EPROM	b- Electrically, Block-level	
	3- EEPROM	c- UV light, Chip Level	
	4- Flash Memory	d- Not Possible	
		·	
Option A:	1 - c, 2 - d, 3 - b, 4 - a		
Option B:	1 - d, 2 - a, 3 - c, 4 - b		
Option C:	1 - d, 2 - b, 3 - a, 4 - c		
Option D:	1 - d, 2 - c, 3 - a, 4 - b		
17.	In a Pipelined Processing System Th	e Instruction $A \leftarrow 3 + A B \leftarrow 4 \times A$	
Ortion A.	Leads Hazard		
Option A:	Resource Hazard		
Option B:	Structural Hazard		
Option D:	Data Hazard		
Option D:			
18.	Which is not true about Instruction P	ipelining	
Option A:	It will improve system performance	in terms of throughput.	
Option B:	Pipeline rate limited by slowest pipel	line stage	
Option C:	Unbalanced lengths of pipe stages re	duces speedup	
Option D:	Pipelining will not be affected by bra	inching instruction.	
10	Elymp's toy on any alassifier as a second	n architactures based or	
19. Option A:	the number of instructions that can be	a avacuted	
Option P:	how they operate on date		
Option C:	the number of instructions that can h	a avacuted and how they operate on data	
Option D:	None of the Above	e executed and now they operate on data.	
20.	We can expand the processor bus co	nnection by using	
Option A:	SCSI bus	2 0	
Option B:	PCI bus	PCI bus	
Option C:	Controllers		
Option D:	Multiple bus		

Q2.	Solve any Four out of Six (5 marks each)
(20 Marks)	
А	Differentiate between Computer Organization and Architecture with a example
В	Describe the detailed Von-Neumann Model with a neat block diagram
С	Explain any five addressing Modes with examples
D	Write Short Note on SR Flip Flop
E	Explain Hardwired control unit design method (state table method)
F	Differentiate between Hardwired control unit and Micro programmed control unit

Q3.	Solve any two10 marks each
(20 Marks)	
А	Consider a Cache memory of 16 words. Each block consists of 4 words.
	Size of the main memory is 128 bytes. Draw the Associative Mapping and
	Calculate the TAG and WORD size.
В	Draw the flow chart of Booths algorithm for signed multiplication and
	Perform -7 x -3 using booths algorithm
С	Write short note on Flynn's classification

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 15th June 2021 to 26th June2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III (DSE)

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	В
Q3.	С
Q4	D
Q5	В
Q6	D
Q7	А
Q8.	С
Q9.	D
Q10.	С
Q11.	А
Q12.	D
Q13.	А
Q14.	В
Q15.	В
Q16.	А
Q17.	В
Q18.	С
Q19.	С
Q20.	В

Q. 2	A) Define CNF form		1mark
	Derivation Steps		4 marks
B)	Ans: (a V b) ^(~a v b) ^ (~b	v a)	
	For each correct definition	1 mark	5marks
C)			

Define a Euler Path	1 mark
Define Euler Circuit.	1 mark

G1 has two vertices of odd degree and and the rest of them have even degree. So this graph has an Euler path but not an Euler circuit. The path starts and ends at the vertices of odd degree. The path is- a,c,d,a,b,d.

G2 has four vertices all of even degree, so it has a Euler circuit. The circuit is -

•

a,d,b,a,c,d,a

D)	Mult	iplication	table of G	ſ				2 marks
	× 7	1	2	3	4	5	6	
	1	1	2	3	4	5	6	
	2	2	4	6	1	3	5	
	3	3	6	2	5	1	4	
	4	4	1	5	2	6	3	
	5	5	3	1	6	4	2	
	6	6	5	4	3	2	1	
ir	verse of	2 ⁻¹ is 4	,3 ⁻¹ is 5 ,6	⁵⁻¹ is 6				2 mark
(G is cycl	ic						1 mark
E)	Defin	e MI						1 mark
	Corre	ct proof						4 marks
F)	Defin exam	ition witl ple is inje	h example ctive not s	urjective				3 marks 2 marks

3 marks

Q. 3 A)

a) Elements of D60	2 marks
b) correct Haase diagram	3 mark each
c) Lattice Definition	2 mark
Reason for lattice	3 marks
B) Define Isomorphic graph	2 marks
Draw K6	3 marks
Draw K3,3	3 marks
(graphs are not isomorphic)	2 mark
C)	
Definition of Equivalence relation	2 marks
Show that R is Equivalence	3 marks

Find equivalence classes	3 marks
$[a] = \{a,b,c\} \ [b] = \{a,b,c\} \ [c] = \{c,a,b\} \ [d] = \{d\}$	
Find rank of R - Rank definition	1 mark
Rank of R is 2	1 mark

Examination 2020 under cluster _4_ (Lead College: PCE, New Panvel)

Examinations Commencing from 15th June 2021 to 26th June2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hourMax. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	А
Q3.	В
Q4	D
Q5	А
Q6	В
Q7	А
Q8.	В
Q9.	D
Q10.	С
Q11.	D
Q12.	С
Q13.	В
Q14.	С
Q15.	С
Q16.	С
Q17.	D
Q18.	D
Q19.	А
Q20.	В

Q2) а

10) with A be a set of tempts and R be a (a,b) R (c,d) by and by ponce that A is no tigativation falition an :- MY NE HOW (A, B) R (B, B) because a+b-b+a A R IN Reptoniste b) to (ALB) RECEID) then and bec : ditas r+b C+b = d+a · (C.d) & Cash) . R 20 Symmetric c) det (ab) R (ed) and (Ed) R (ed) i and bic and children Edding 24.5 and 24.5 Add+C+f = b+C+d+c a+f = 6+0 (a,b) R(e,f) i R & Tappetty i Pü an Equivalence Relation

(326) Stow that the dam of Accuse of them Construction Subject is division by g **Q2**)b 31" : Not p(n) = min (n+1) + (n+2) 15p 1: For any 1 PG7+ 1+ (+)+ (++)+ 1+8+27:36 ASASCA & ODVERSE 649 P(3) = 13+ (3+0) + (8+3) = 8+00+64 = 99 south to altritte by " Hence prod & prodie Thus Sup ? - Adams that the desail is The set OTO R is SER & THERE " K3+ (K+1) + (K+2) is divisible by ? is his + Extended (x+5) = 900 Any the east term is plant Now POR+1)= (K+1) + (K+2) + (R+2) 3 = (K+1)¹+(K+3)¹+(+1+MK¹+51K+5²) = [K³4 (K+)³+ (K+2)⁵] + B*³+23×+23 = (9+1) + = (+3+3++3) P(ret) = 9 (m+ risanet) Hence power) is derivible by 9 * PCR+1) is letter i pain is the god are kell Step E: House by Mathematical Secturities the beauti is the for all no N.

Q2) с

ose prove that the set A for 1, 2, 3, 4, 53 a givite Adelian group under Addi modulo 6. perpare the table 5 3 4: -(+) 24 3 2 0 0 O 5 3 4 1 0 5 4 0 2 12 12 0 5 4 3 3 2 2 \overline{D} 5 4 4 74 2 From the table we see that (1) is a (7) 20 2 = 505 = 4 3 -The fruit 2000 on the give column show O' le the identify Element (1) The positions of "the additive forward every new (and every column) ramo every element & A has the adold the 105:0 Hence Proverse & 1 is Atro 3020 - 3-1=3 204=0-" 2"=4 "to i Giu a gloup under addition mot Fulther all and 304=3 i Gie Abelian ? to AOS=3 · 405=504

Q2)

d

a) Flored the Transferre Classes of R on Azeria. 43 water the R. (CHAS, G. D. G. 43, (B. 43, Ch. (3,2)-C4,1)2 ALA = 1 0 1 0 1 0 1 * 0 0 1 0 1 Sup 1 : DTE 0 10 14.27 64.43 000 00 1. 5.3. Cx + e-2, -1 2.60 Rea. 0 4 11.4.7 . CI. 43. Car 1.ª to prizetions Caro, Carris, Chi 0 11 Ca 4 0 1 pil. 01 for a star 1 0 F 01 50.4 0 (4127 - Cr.45) 000 1.2.2.2.20 000 Cir Jul 4 1.9.3.10 Ray= 15 SCUR CONT. CONT.C. (217 (2,27, (2,3) Caro Caro (MIN, Chem) (40)

3) Let -FIRSE to a quantum glow plan prove Q2)fthat it's easily by and any ty part - I be apportion means trang about of A to respectivited and the open clament by B and any element of A to associated with a children element of R. In pitce wards of to Bijective means there is one to one consequendance between the elements of A and the elements of B Ket and be two eliments of A det by by be two elements of B Auch that -pearls by and -fearls be stence as = for Children and the " & possible lat for Chi)=for Chi i aisaz 1 -PraiDed (m+) : bis br This wrears to is one to one -

Q3b

\$145 Constitut the and A. J. S. S. A. M. B. Marter Is Deeve mar and to a cyclic group the Flores was platers and we share Browning the states are faired 1 4 120 6 a sule manager that 5"+ B , 5" + " + + + 3 - 21 - 5 - 31 - 21 - 4 3 - dag - t. 3 - tang -1 multidurent of a can be under an at source (A, a) to a specie group cannot 8 4 15 grounder 6 min augurant grounder by find to denoted by < (2003) - The transmit of the and European of the - The transmit of the and European of the min the standard the the denoted to min the standard the the denoted of the the standard could be the denoted of the the standard the the standard of the the standard the the denoted of the the standard the the standard of the the standard the standard of the the standard the standard of the the standard of the standard of the standard of the the standard of the standard of the standard of the the standard of the standard of the standard of the the standard of the standard of the standard of the standard of the the standard of the standard of the standard of the standard of the the standard of the standard of the standard of the standard of the the standard of the standard of the standard of the standard of the the standard of the standard of the standard of the standard of the the standard of the standard of the standard of the standard of the the standard of the standard of the standard of the standard of the the standard of the the standard of the the standard of the standard of the standard of the standard of the the standard of the the standard of the 3 4 25 ground . The Autograp of flight is - 1,2,3,4,5,63 6 the Rod A It order is the muniter of character is 6 . Hey we can prove that the surgeoup \$ -13.33 is the set A stirly.

Example 10 : A function $R = \left\{\frac{7}{3}\right\} \rightarrow R = \left\{\frac{4}{3}\right\}$ is defined by $I(x) = \frac{4x-5}{3x-7}$. Q3)c Prove that I is bijective and find the rule for f⁻¹. Sol. : (i) To prove that / is injective or one-to-one. Let x_1 , x_2 be two elements in $H = \left\{\frac{7}{3}\right\}$ and let $f(x_1) = f(x_2)$. $\frac{4x_1-5}{3x_1-7}=\frac{4x_2-5}{3x_2-7}$: $(4x_1 - 5)(3x_2 - 7) = (4x_2 - 5)(3x_1 - 7)$ $\therefore \quad 12x_1x_2 - 28x_3 - 15x_2 + 35 = 12x_2x_1 - 28x_2 - 15x_1 + 35$:. $(-28 + 15) x_1 = (-28 + 15) x_2$ $x_1 - 13x_1 = -13x_2$ $x_1 = x_2$. fis injective or one-to-one. (ii) To prove that f is surjective or onto. Let $y = \frac{4x-5}{3}$ x 3xy - 7y = 4x - 53x-7 : 3xy-4x=7x-5 :: x(3y-4)=7y-5 $\therefore x = \frac{7y-5}{3y-4}$ $\therefore x \in R - \left\{\frac{7}{3}\right\} \equiv y \in R -$ - //s surjective or onto. (iii) Since it is njective and surjective, it is bijective and has f^{-1} and f^{-1} =

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 15th June 2021 to 26th June2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are			
Q1.	compulsory and carry equal marks.			
1.	In a class of 50 students, 20 students play cricket and 16 students play football. It			
	is found that 10 students play both the games. Find out the number of students			
	who play neither of the games.			
Option A:	42			
Option B:	24			
Option C:	12			
Option D:	14			
2.	Let $A=\{1,2,3,4,5,6,7,8\}$. Let xRy whenever y is divisible by x, so R is a			
Option A:	Equivalence Relation			
Option B:	Partial Order Relation			
Option C:	Symmetric			
Option D:	Neither Equivalence Nor Partial Order Relation			
3.	$(p^p)^{(p \rightarrow (q^q))}$ is equivalent to			
Option A:	p→q			
Option B:	q→p			
Option C:	p^q			
Option D:	None of the above			
4.	If f and g are onto then function (gof) is ?			
Option A:	one to one			
Option B:	one to many			
Option C:	into			
Option D:	onto			
5.	Consider P : Food is good, Q: Service is good, R: Restaurant is 5-star.			
	Write the symbolic notation of the statement " It is not true that 5 star rating			
	always means good food and good service"			
Option A:	$(P \land Q) \rightarrow R$			
Option B:	$\sim (R \rightarrow (P^{Q}))$			
Option C:	$R \to \sim (P \land Q)$			
Option D:	P^~Q			

6.	A is a semigroup (A,*) that has an identity element.
Option A:	Cyclic group
Option B:	Lattice
Option C:	Poset
Option D:	Monoid
7.	A graph having all vertices with equal degree is known as
Option A:	Regular Graph
Option B:	Euler Graph
Option C:	Simple Graph
Option D:	Hamiltonian Graph
8.	Which of the following is a Tautology?
Option A:	(~p v p) ^ q
Option B:	$(p \lor q) \to (p \to q)$
Option C:	$((p \lor q)^{\wedge} \sim p) \to q$
Option D:	$(\sim p \lor \sim q) \rightarrow (p \rightarrow q)$
9.	A graph has an Euler circuit if
Option A:	it is connected and has an even number of vertices.
Option B:	it is connected and has an even number of edges.
Option C:	it is connected and every vertex has an odd degree.
Option D:	every vertex has even degree
10	
10.	Let f and g be the function from the set of integers to itself, defined by $f(x) = 3x + 1$
Option A:	and $g(x) = 4x + 4$. Then the composition of 1 and g is
Option B:	12x+4
Option C:	$12x \pm 13$
Option D:	12x+15 12x+8
Option D.	
11.	k10 is a complete graph on 10 vertices and will have edges.
Option A:	45
Option B:	54
Option C:	40
Option D:	42
12.	Solution of linear homogenous recurrence relation:
	$a_n = 3a_{n-1} - 2a_{n-2}$ with $a_0 = 1$, $a_1 = 3$, $n \ge 2$
Option A:	$a_n = (-\overline{1}) + 2^n$
Option B:	$a_n = (-1) + 3.2^n$
Option C:	$a_n = (-\overline{1})(-1)^n + 2^n$
Option D:	$a_n = (-1) + 2.2^n$
13.	Let A be a finite set of size n, the number of elements in the power set of A is
Option A:	2 ⁿ
Option B:	n ²
Option C:	$(2n)^2$
Option D:	2 ²ⁿ

14.	The transitive closure of the relation $R=\{(a,b),(b,c),(c,d)(e,d)\}$ on set
	$A=\{a,b,c,d,e\}$ is
	((-1), (1 - 1), (-1), (-1))
Option A:	$\{(a,b),(b,c),(c,d),(e,d),(a,c)\}$
Option B:	$\{(a,b),(b,c),(c,d),(e,d),(a,c),(a,d),(b,d)\}$
Option D:	$\{(a,b),(b,c),(c,d),(e,d),(a,c),(a,d)\}$
Option D:	$\{(a,b),(b,c),(c,d),(d,e),(a,c),(a,d)\}$
15.	What is the correct translation of the following statement into mathematical logic? "Some real numbers are rational"
Option A:	$\exists x(real(x) v rational(x))$
Option B:	$\exists x(real(x) \wedge rational(x))$
Option C:	$\forall x (real(x) \rightarrow rational(x))$
Option D:	$\exists x(rational(x) \rightarrow real(x))$
16.	The minimum number of edges in a connected graph with n vertices is
Option A:	n-1
Option B:	n
Option C:	n+1
Option D:	n+2
17.	The full series small is
	The following graph is
	\sim
Option A:	Bipartite Graph
Option B:	Complete Bipartite Graph
Option C:	Mixed Graph
Option D:	Simple Graph
18.	What is the minimum number of students required in a class to be sure that at least 6 will receive the same grade , if there are five possible grades A,B,C,D and E.
Option A:	62
Option B:	66
Option C:	26
Option D:	22
19.	Which of the following four subset of integers N is not closed under the operation
	of multiplication.
Option A:	A={0,1}
Option B:	$F=\{2,4,6,\}$
Option C:	B={1,2}
Option D:	E={1,3,5,}
20.	The between two words is the number of differences between
	corresponding bits.
Option A:	Hamming code

Option B:	Hamming distance
Option C:	Hamming rule
Option D:	Hamming parity checks

O2.	Solve any Four questions out of Six.	5 marks each
(20 Marks)		
А	Find the CNF form of $(\sim a \rightarrow b)^{\wedge} (a \leftrightarrow b)$	
В	Define the following with example 1.Ring 2. Bipartite Graph 3.Chain 4.Semigroup 5. Sublat	ttice
С	Define Euler Path and Euler Circuit. Check whether Euler Path Circuit exist in the following graphs.	ath , Euler
D	Consider G={1,2,3,4,5,6} under the multiplication modulo 7 i) Find multiplication table of G ii)Find 2 ⁻¹ ,3 ⁻¹ ,6 ⁻¹ iii) Is G cyclic?	7.
E	Prove using Mathematical Induction that n^3+2n is divisible by 3 for all $n \ge 1$	
F	Define and give examples of injective surjective and bijecti Check the injectivity and surjectivity of the following function $f: N \rightarrow N$ given by $f(x)=x^3$	ve functions. on

Q3.	Solve any Two Questions out of Three .10 marks each
(20 Marks)	
A	Let D60 be the poset consisting of all the positive divisors of 60 under the partial order of divisibility.
A	(a) Write down the elements of D60?(b) Draw the Hasse Diagram of D60.(c) Define Lattice. Is D60 a lattice? Give a reason for your answer
В	Define Isomorphic Graph. Draw K6 and K3,3 graphs . Find whether they are Isomorphic or not?
С	Let $A = \{a,b,c,d\}$ and let $R = \{(a,a),(a,b),(a,c),(b,a),(b,b),(c,a),(b,c),(c,b),(c,c),(d,d)\}$. Show that R is a

equivalence relation and determine the equivalence classes and find the
rank of R.

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 15th June 2021 to 26th June2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE SemesterIII

Course Code:CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks							
1.	The binary relation $\{(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)\}$ on the set $\{1, 2, 3,4\}$ is							
Option A:	Reflexiive, Symmetric and Transitive							
Option B:	Irreflexive, Symmetric and Transitive							
Option C:	Neither Reflexiive, nor Irreflexive but Transitive							
Option D:	Irreflexive and Antisymmetric							
2.	Given the following statements pick the one that is not a tautology?							
Option A:	$(p \rightarrow q) \rightarrow q$							
Option B:	$p \rightarrow (p \lor q)$							
Option C:	$(p \land q) \to (p \to q)$							
Option D:	$(p \land q) \rightarrow (p \lor q)$							
3.	Given the set {1, 2, 3, 4} How many numbers must be selected from it to guarantee that at least one pair of these numbers add up to 7?							
Option A:	14							
Option B:	5							
Option C:	9							
Option D:	24							
•								
4.	All Isomorphic graph must have representation							
Option A:	cyclic							
Option B:	tree							
Option C:	adjacency list							
Option D:	adjacency matrix							
5.	The cardinality of the set of odd positive integers less than 10 is ?							
Option A:	5							
Option B:	10							
Option C:	3							
Option D:	20							
6.	If $g(x)=3x+2$ then $gog(x)$:							
Option A:	6x+4							
Option B:	9x+8							
Option C:	3x-2							

Option D:	2-3x
7.	Length of path is
Option A:	Number of Edges in the path
Option B:	Number of circuits in the path
Option C:	Number of loops in the path
Option D:	Number of Vertices in the path
8.	If every two elements of a poset are comparable then the poset is called
Option A:	Sub ordered poset
Option B:	Totally ordered poset
Option C:	Sub Lattice
Option D:	Semigroup
9.	A has a greatest element and a least element which satisfy $0 \le a \le 1$
	for every a in the lattice(say, L).
Option A:	semilattice
Option B:	Join semilattice
Option C:	Meet semilattice
Option D:	Bounded semilattice
10.	Let $S = \{a, b, c, d, e, f, g\}$. Determine which of the following are partitions of S:
Option A:	$P1 = [\{a, c, e\}, \{b\}, \{d, g\}],$
Option B:	$P2 = [\{a, e, g\}, \{c, d\}, \{b, e, f\}],$
Option C:	$P3 = [\{a, b, e, g\}, \{c\}, \{d, f\}],$
Option D:	$P4 = [\{a, b, c, d, e, f, g\}, \{c, g\}]$
11.	Solution of linear homogenous recurrence relation:
	$a_n = 3a_{n-1} - 2a_{n-2}$ with $a_0 = 1$, $a_1 = 3$, $n \ge 2$ is
Option A:	$a_n = (-1) + 2^n$
Option B:	$a_n = (-1) + 3.2^n$
Option C:	$a_n = (-1)(-1)^n + 2^n$
Option D:	$a_n = (-1) + 2.2^n$
12.	The number of integers between 1 and 1000 that are divisible by 3 but not by 2 or 5
	is
Option A:	132
Option B:	
Option C:	134
Option D:	143
13.	It six numbers are selected from 1 to 15, find the least number of selections which
	will have the same sum
Option A:	61
Option B:	91
Option C:	
Option D:	51
1.4	
14.	The number of relations from $A = \{a, b, c\}$ to $B = \{1, 2\}$
Option A:	54

Option B:	74
Option C:	64
Option D:	84
15.	Let $G = (Z_{6},+_{6})$ is an Abelian group then the inverse element of 4 is
Option A:	0
Option B:	1
Option C:	2
Option D:	3
16.	If $\mathbf{G} = (\mathbb{Z}_7^*, \times_7)$ is a group, the inverse of elements 2, 3 and 6 are
Option A:	2,3 and 6
Option B:	1,2 and 3
Option C:	4,5 and 6
Option D:	3,4 and 6
17.	The complete graph with four vertices hasedges.
Option A:	3
Option B:	4
Option C:	5
Option D:	6
18.	Which of the following function is bijective?
Option A:	$f: R \to R \text{ defined as } f(x) = x^2$
Option B:	$f: R \to R \text{ defined as } f(x) = 3^x$
Option C:	$f: R \to R \text{ defined as } f(x) = x^3 - x$
Option D:	$f: R \rightarrow R \ defined \ as \ f(x) = x^3 + 1$
19.	Let a POSET L, \leq be a Lattice. Then for every pair of elements a,b \in L has
Option A:	a GLB.
Option B:	a LUB.
Option C:	both GLB and LUB.
Option D:	Both Maximal and Minimal
20.	In a graph a node which is not adjacent to any other node is called node.
Option A:	Simple
Option B:	Isolated
Option C:	Initiating
Option D:	Different

Q2	Solve any Four out of Six	5 marks each
А	Let A be a set of integers, Let R	be a Relation on AXA defined by (a,b)R(c,d) if

	and only if $a+d = b+c$. Prove that R is an Equivalence Relation.
В	Show that the sum of the cubes of three consecutive integers is divisible by 9
С	Prove that the set $A=(0,1,2,3,4,5)$ is a finite Abelian group under Addition modulo 6
D	Find the Transitive closure of the relation R on A= $\{1,2,3,4\}$ where the Relation R= $\{(1,2),(2,2),(2,4),(3,4),(4,3),(3,2),(4,1)\}$
Е	Check whether Euler cycle and Euler Path exists in the Graph given below.
F	Let $f : A \rightarrow B$ be a Function from A to B. Prove that f^{-1} exists if and only if f is a Bijective Function.

Q3.	Solve any Two Questions out of Three 10 marks each	
-		
А	Draw the Hasse Diagram of \mathbf{D}_{72} and \mathbf{D}_{105} and check whether they are Lattice.	
В	 Consider the Set A={1,2,3,4,5,6} under multiplication Modulo 7. 1) Prove that A is a Cyclicgroup 2) Find the orders and the Subgroups generated by {2,3}and {3,4} 	
С	A Function $R - \left\{\frac{7}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ is defined as $f(x) = \frac{(4x-5)}{(3x-7)}$ Prove that f is Bijective and find the rule for f ⁻¹) =

University of Mumbai Examination 2020 under cluster 4 (Lead College: PCE) Examinations Commencing from 15th June 2021 to 26th June 2021 Program: COMPUTER ENGINEERING Curriculum Scheme: Rev2019 Examination: SE Semester III Course Code: CSC303 and Course Name: DATA STRUCTURE

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	С
Q3.	В
Q4	D
Q5	А
Q6	В
Q7	В
Q8.	В
Q9.	С
Q10.	А
Q11.	D
Q12.	С
Q13.	В
Q14.	D
Q15.	D
Q16.	А
Q17.	С
Q18.	В
Q19.	А
Q20.	В

02	Solve any Fo	our out o	of Six						5 mark	s each	
×- (20 Marks											
Each)											
Luch	Consider mar	ks of 5	subject	ts of a	student	renres	ented :	as sinc	Jv linke	d list Wri	te a C
	program to co	program to compute the total and percentage of the student.									
А	Node / Varia	bles de	larati	ion 1	Mark		the stu	uciit.			
	Program log	tic and f	unctic	$ms \cdot 4$	Marke						
	An array conta	ins the e	lement	s –							
	8,13,17,26,44,	8.13.17.26.44.56.88.97.									
	Using binary s	earch alg	orithm	, trace t	the step	s follow	ved to f	ind nu	mbers 56	5&9.	
	At each step, show the contents of low, high & mid and array after each iteration										
	i) Item to be searched=56										
	Initial	low			mid				high		
	Initial	8	13	17	26	44	56	88	97		
	Аггау	0	1	2	3	4	5	6	7		
	Low=0; h	igh=7;	mid=3	3; a[mi	d]=a[3]=26					
	26 < 56,										
						low	mid		high		
	Step1	8	13	17	26	44	56	88	97		
		0	1	2	3	4	5	6	7		
	Low=mid+1=4; high=7; mid=5; a[mid]=a[5]=56										
	Item is fo	ound, so	retur	n locat	tion 5.						
		_									
В	ii) Item to be searched=9										
	low mid high										
	Initial	low	10	17		4.4	= (00	nign		
	Array	8	13	17	26	44	50	88	97		
		U	I	2	3	4	5	0	7		
	Low_0. h										
	100 - 0, 100 - 0, 1000 -	lign-/,	IIIIu–J	, aliii	uj–a[s]–20					
	20 > 9,										
		low	mid	high							
	Stop1	10W	13	17	26	11	56	88	07		
	Step1	0	13	2	20	44	5	6	7		
		U	1	2	3	4	5	0	/		
	$l_{OW} = 0.1$	nigh-mi	d_1-2	mid-	·1· ofm	id]-a[11-13				
	13 > 9	ingn–ini	u-1-2	, mu–	·1, a[11	nuj–al	1]–13				
	15 > 7,	low									
		mid.									
	Sten2	high									
		8	13	17	26	44	56	88	97		
		0	1	2	3	4	5	6	7		
		-						-			
	low=0;1	nigh=mi	d-1=0	; mid=	:0; a[n	id]=a[0]=8				

	Vertex	Vertex	Vertex	Vertex	Vertex	Output	Action
	0	1	2	3	4	Sequence	
In- degree	0	1	2	3	1	0	Delete Vertex (& updation-degree
	-	0	2	2	0	0,1	Delete Vertex 2 & upda in-degree
	-	-	1	1	0	0,1,4	Delete Vertex & upda in-degre
	-	-	1	0	-	0,1,4,3	Delete Vertex 3 & upda in-degree
	-	-	0	-	-	0,1,4,3,2	Delete
OR In case if Topologi	ical order f 4 is cons ical order	sidered b side: 0,4,1	,3,2 efore 1 in ,3,2	ı sequenc	e, then th	e oder chan	ges and
Define ci	rcular que ents 50 an	eue. Assu d 70 at lo	me a circu cations 2	and 3 resp	e with a ca pectively.	pacity 6, cur Show with e	rrently hat example, t

Q3.	Solve any Two Questions out of Three	10 marks each
(20		
Marks		
Each)		
А	Create a AVL tree for the sequence:	

	Insert A:			$\binom{N}{1}$					
			(I	\int_{1}^{1}	a) *1				
		G	F 1	M	R				
	Insert T:	(A) ⁰	(F) 1 (-2 R -1 T	RR	F ¹ A ⁰)°
	Insert G:	Á	F G)°			
	Given the fo characters:	llowing	frequenc	ies for ch	aracters,	find the H	Iuffman c	ode for all the	
	Cha	aracter	S	Т	Ι	N	G		
В	Free	quency	9	16	2	30	12		
	Selection of Writing bin Correct con	proper ary code nputatio	nodes an es: 2 Ma n of Hut	nd combi I <mark>rks</mark> ffman co	ning: 6 des: 2 N	Marks Iarks			

Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester: III(for Direct Second Year-DSE) Course Code: CSC303 and Course Name: Data Structure

Time: 2 hour

Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	D
Q3.	С
Q4	D
Q5	D
Q6	В
Q7	D
Q8.	В
Q9.	В
Q10.	А
Q11.	D
Q12.	В
Q13.	D
Q14.	А
Q15.	С
Q16.	D
Q17.	D
Q18.	D
Q19.	С
Q20.	С

Q2	Solve any Four out of Six5 marks each
	Write a C functions to implement insertion and deletion in queue using linked list.
	Solution:
	Let the node declaration for queue using linked list implementation is:
	<pre>struct node{ int data; struct node *next; }; struct node *front=NULL, *rear=NULL, *temp *newNode;</pre>
	// Insertion function 'enqueue' for queue.
	void equeue(int item)
	<pre>newNode=(struct node*) malloc(sizeof(struct node)); newNode->data =item; newNode->next=NULL; if(front==NULL)</pre>
A	{ front=rear=newNode; }
	else { rear->next=newNode; rear=newNode; }
	}
	// Deletion function 'dequeue' from queue.
	void dequeue() {
	if(front==NULL) {
	printf("queue is empty!!! Deletion not possible!!!\n"); return;
	} else
	temp=front; printf("\ndeleted item=%d",temp->data); front=front->next; free(temp);
	} }

			(3	(4) 0) 1		
	Step-05: • Ve • So, • No Topologic	rtex-4 has , remove v w, update al order li	the least in the in-deg st : $1,2,3,4$	in-degree nd its asso gree of oth 5	add that ve ciated edg her vertices	ertex in to es. 5.	pological	order list.	
	Step-06: •Ve •So, •No Topologic	rtex-5 has , remove v w, update al order lis	the least i vertex-5 ar the in-deg st : 1,2,3,4	in-degree nd its asso gree of oth 1,5	add that ve ciated edg her vertices	ertex in to es. s.	pological	order list.	
	Another po	ossible top	pological o	ordering so	equence is	: 1,3,2,4,5			
	Consider a into the tal	hash tabl ble.	e with size	e = 7. Usi	ng Linear _]	probing, ii	nsert the k	eys 99,33,2	23, 44, 43
D	Solution: Formula	with corre	ect inserti	ion for ea	ch key : 1	Mark			
	Hash table	of size=7	,						
	Index	0	1	2	3	4	5	6	
	Key)T Write	99 ADT for s	23 stack	44	43	33		
Е	Solution: De AD	finition: 2 T for Sta	Marks ck: 3 mark	KS					
F	Write an a using Stac	lgorithm t k data stru	to check the other	ne well-for	rmedness o	of parenthe	esis in an	algebraic e	xpression

Solution:
Step 1: Scan the expression from left to right.
Step 2: Set flag = 1
Step 3: Repeat until each symbol in the expression is scanned
If symbol is '(' or '{' or '[', push it on the stack.
If symbol is ')' or '}' or ']', then
If stack is empty, then set $flag = 0$
Else
pop top of the stack and place it in temp.
If symbol is ')' and temp is either '{' or '[', then set flag=0 and GOTO step 5
If symbol is '}' and temp is either '(' or '[', then set flag=0 and GOTO step 5
If symbol is ']' and temp is either '(' or '{', then set flag=0 and GOTO step 5
Step 4: If stack is not empty, then set flag=0 and GOTO step 5
Step 5: If flag =1, then Print "Valid expression"
Else Print "Invalid expression"
Step 6: END

Q3	Solve any Two Q	uestions o	out of Thre	e			10 mark	s each
А	 Write a C program for Singly Linked list for performing following operations Create SLL Display SLL Delete last node from SLL Insert a node at start of SLL Node definition – 1M Main function – 1M Create function – 2M Display function – 2M Delete last node function – 2M Delete last node function – 2M Create a Huffman tree and find Huffman codes for each character in the string 							
В	Create a Huffman tree and find Huffman codes for each character in the string "CONNECTION". Char. C O N E T I Frequency 2 2 3 1 1 1 Computing frequency:1 mark Arranging and creating a nodes: 5 marks Final tree: 1 mark Assigning codes: 1mark Computing code for each character: 2 marks					string		
С	Computing code for each character: 2 marks Draw the B-tree of order 4 created by inserting the following data arriving in sequence: 25,16,20,5,39,7,11. Insertion of each key :7 Marks Correct Splitting: 2 marks Final tree : 1mark							

Examination 2020 under cluster 4 (Lead College: PCE, Panvel)

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: COMPUTER ENGINEERING

Curriculum Scheme: Rev2019

Examination: SE Semester III (for Direct Second Year-DSE) Course Code: CSC303 and Course Name: DATA STRUCTURE

Time: 2 hour

Max. Marks: 80

01.	Choose the correct option for following questions. All the Questions are						
	compulsory and carry equal marks						
1	Which of the following option is true about nonlinear data structures?						
Ontion A:	data elements are present at multiple levels						
Option B:	Carbaga ageh alement is traversable through a single run						
Option C:	data alamanta ara saguantially connected						
Option D:	Efficient utilization of memory						
Option D.							
2	The operation of processing each element in the list is known as						
Ontion A:	Creation						
Option R:	Insertion						
Option C:	Deletion						
Option D:	Traversal						
Option D.							
3.	A full binary tree with n leaves contains						
Option A:	n - 1 nodes						
Option B:	log ₂ n nodes						
Option C:	2n - 1 nodes						
Option D:	2 ⁿ nodes						
•							
4.	Queue data structure is used for -						
Option A:	Preorder traversal in tree						
Option B:	Postorder traversal in tree						
Option C:	Depth first traversal in graph						
Option D:	Breadth first traversal in graph						
•							
5.	Top value in stack changes -						
Option A:	While checking overflow						
Option B:	While checking underflow						
Option C:	Before deletion of an element from stack						
Option D:	After deletion of an element from stack						
6.	For which of the following operation, Linked lists are not suitable data structures?						
Option A:	Linear search						
Option B:	Binary search						
Option C:	Sorting						
Option D:	traversal						

7.	Stacks cannot be used to
Option A:	evaluate an arithmetic expression in postfix form
Option B:	implement recursion
Option C:	convert a given arithmetic expression in infix form to is equivalent postfix form
Option D:	allocates resources (like CPU) by the operating system
8.	The Depth First Search algorithm has been implemented on following graph. One possible order of visiting the nodes of the graph is
Option A:	MRQNOP
Option B:	NMRQPO
Option C:	OPMQNR
Option D:	NORMQP
9.	Which of the following is essential for evaluating a postfix expression?
Option A:	An operator stack
Option B:	An operand stack
Option C:	An operator stack and an operand stack
Option D:	A parse tree
1.0	
10.	A tree in which, at every node the height of its left sub tree and right sub tree differ
	at most by one is known as
Option A:	AVL Tree
Option B:	Complete Binary Tree
Option C:	Binary Search Tree
Option D:	Threaded Binary Tree
11.	Hash function f defined as f(key)=key mod 11, with linear probing, is used to insert the keys 37,38,72,48,98,56 into a table index starting from 0. What will be the location of key 16?
Option A:	5
Option B:	6
Option C:	7
Option D:	8
12.	Assume a binary search tree created by inserting the values 27, 9, 23, 22, 29, 25, 15, 50, 95, 60, 40. Number of nodes in the right subtree will be
Option A:	4
Option B:	5
Option C:	6
Option D:	7

13.	Which is not the valid balance factor for an AVL tree
Option A:	0
Option B:	1
Option C:	-1
Option D:	2
14.	B+ tree can contain a maximum of 7 pointers in a node. What is the minimum
	number of keys in leaves?
Option A:	3
Option B:	4
Option C:	5
Option D:	6
15.	Which of the following statement is not true about the doubly linked list?
Option A:	We can traverse in both the directions.
Option B:	It requires extra space
Option C:	Implementation of doubly linked list is easier than the singly linked list
Option D:	It stores the addresses of the next and the previous node
1.5	
16.	Given, arr = $\{1,3,5,6,7,9,14,15,17,19\}$ and the search_key = 19, how many
	comparisons are required using binary search?
Option A:	
Option B:	
Option C:	3
Option D:	4
17	P tree of order n is a order n multiway tree in which each non-root node contains
Option A:	b-tree of order in is a order-in multiway tree in which each non-root node contains at most $(n - 1)/2$ keys
Option B:	exact (n - 1)/2 keys
Option C:	at least 2n keys
Option D:	at least $(n - 1)/2$ keys
Option D.	
18	Postfix expression corresponding to the infix expression " $(1+4)/(8-6) \times 3$ " is
Option A:	14/86*3-
Option B:	14/86*-3+
Option C:	14+86/-*3
Option D:	14+86-/3*
19.	Which of the following trait of a hash function is most desirable?
Option A:	It should be easy to implement
Option B:	It should occupy less space
Option C:	It should cause less collisions
Option D:	It should cause more collisions
20.	Topological sort can be implemented on a?
Option A:	Linked list
Option B:	Binary tree
Option C:	Directed acyclic graph
Option D:	Directed cyclic graph

Q2	Solve any Four out of Six	5 marks each
(20 Marks Each)		
А	Write a C functions to implement insertion and deletion in c linked list.	lueue using
В	Explain deletion of a node in a binary search tree.	
С	Find topological sorting sequence in the following graph:	
D	Consider a hash table with size = 7. Using Linear probing, i $99,33,23,44,56,43,19$ into the table.	nsert the keys
E	Define ADT. Write ADT for stack.	
F	Write an algorithm to check the well-formedness of parenth algebraic expression using Stack data structure.	esis in an

Q3.	Solve any Two Questions out of Three10 man	rks each				
(20 Marks Each)						
А	Create a Huffman tree and find Huffman codes for each character in the string "CONNECTION".					
В	 Write a C program for Singly Linked list for performing following operations Create SLL Display SLL Delete last node from SLL Insert a node at start of SLL 					
С	Draw the B-tree of order 4 created by inserting the following data a in sequence: 25,10,16,32,20,5,27,39,7,11.	rriving				

Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester: III

Course Code: CSC303 and Course Name: Data Structures

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	To convert the infiv expression $(D \mid (C E) \times E)$ into postfix how many pop
1.	operations will be required?
Option A:	3
Option B:	4
Option C:	5
Option D:	6
2.	What is the operation performed by the following code with respect to Binary search tree, if 'rt' is pointing to the root node: struct node *ptr=rt; struct node *fun(struct node *ptr)
	{
	if(ptr==NULL)
	return NULL;
	else if(ptr->right==NULL)
	return ptr;
	eise return fun(ntr->right).
Option A:	returns the smallest value in the binary search tree
Option B:	returns the right child of root node
Option C:	Returns the largest value in the binary search tree
Option D:	Returns all right nodes in the binary search tree
- -	
3.	Which of the following statements is not correct for queues?
Option A:	Queue is used in process and job scheduling
Option B:	Queue is used in depth first search traversal
Option C:	The last inserted elements is removed at the last from queue
Option D:	Elements in the queue can be removed based on their priority.
4.	The following postfix expression with single digit operands is evaluated using a stack: $2 3^{4}/75 + 3^{*}$
	Note that ^ is the exponentiation operator. The top two elements of the stack after
	'+' is evaluated are:
Option A:	5,7
Option B:	7,4

Option C:	12,8
Option D:	12,2
•	
5.	After performing these set of operations, what will be the contents of a double
	ended queue?
	InsertFront (16);
	<pre>InsertRear(33);</pre>
	<pre>InsertRear(40);</pre>
	<pre>DeleteFront();</pre>
	<pre>InsertRear(25);</pre>
Option A:	33,40,25
Option B:	16,33,25
Option C:	16,33,40
Option D:	25,33,40
6.	Which of the following statements about stacks is incorrect?
Option A:	Stacks can be implemented using linked lists
Option B:	Stacks are first-in, first-out (FIFO) data structures
Option C:	New nodes can only be added to the top of the stack
Option D:	The last node (at the bottom) of a stack has a null (0) link
•	
7.	What operation the following pseudo code indicates :
	void func(Queue Q)
	{
	if(Q not empty) {
	<pre>int i=delete(Q);</pre>
	func(Q);
	<pre>insert(Q,i); }</pre>
	}
Option A:	Reverses queue elements
Option B:	Keeps queue unchanged
Option C:	Deletes front element from queue
Option D:	Deletes all elements from queue
8.	What is the output of the following code, if linked list contains elements
	16,37,28,49:
	<pre>void fun1(struct Node* head)</pre>
	{
	if (head == NULL)
	return;
	<pre>fun1(head->next);</pre>
	<pre>printf("->%d", head->data);</pre>
	}
Option A:	->16->37->28->49
Option B:	->49->28->37->16
Option C:	->37->28>49->16
Option D:	->28->49->37->16
9.	How many pointers are contained as data members in the nodes of a circular,

	doubly linked list of integers with seven nodes?			
Option A:	7			
Option B:	8			
Option C:	14			
Option D:	15			
10.	Which is not the property of Linear data structures ?			
Option A:	Contiguous allocation			
Option B:	Sequential access			
Option C:	Static or dynamic allocation			
Option D:	Abstract Data type			
11.	Consider the DAG with Consider V = $\{1, 2, 3, 4, 5, 6\}$, shown below. Which of the following is not a breadth first search sequence for the graph?			
Option A:	123456			
Option B:	132465			
Option C:	132645			
Option D:	324165			
				
12.	A binary search tree is created by inserting the numbers 2, 6, 0, 1, 9, 8, 4, 7, 3, 5. What is the post-order traversal sequence of the resultant tree?			
Option A:	0123456789			
Option B:	0243165987			
Option C:	1035478962			
Option D:	1034567892			
13.	What the following code do:			
	ptr=head;			
	while(ptr!=NULL) {			
	tr=ptr->next->next; }			
Option A:	Traverse list			
Option B:	Traverse even position nodes			
Option C:	Traverse odd position nodes			
Option D:	Deletes odd position nodes			
14.	Select the operation performed by the following code segment with respect to binary tree:			
	void func(struct Node* p) {			
	if $(p == NULL)$			
	return;			
	else			

	{ struct Node* temp;
	<pre>func(p->left);</pre>
	<pre>func(p->right);</pre>
	<pre>temp = p->left;</pre>
	p->left = p->right; p->right = temp:
	}
	}
Option A:	find the minimum element in a binary search tree
Option B:	find the maximum element in a binary search tree
Option C:	Interchange of nodes
Option D:	Converts tree into its mirror image
15.	If you insert 75 into the following binary search tree using the algorithm that
	keeps the tree height-balanced by doing rotations, what tree do you get?
	60
	(40) (70)
	25 63 66
Option A:	Left child of 65
Option B:	Right child of 65
Option C:	Right child of 40
Option D:	Left child of 80
16.	How many nodes will be created in a B-tree by inserting the keys :
	11,14,17,20,27,31,41,29,75,30 (Assume ORDER 5) ?
Option A:	4
Option B:	5
Option C:	6
Option D:	7
17.	Which of the following statement is incorrect with respect to graphs?
Option A:	A sequence of vertices that connect two nodes in a graph is called a path.
Option B:	Degree of vertex in a graph is the number of edges that touch it.
Option C:	A tree is a graph with cycles.
Option D:	In complete graph, every vertex is directly connected to every other vertex
18.	What is the worst case for linear search?
Option A:	Search key is available at first location
Option B:	Search key is available at last location
Option C:	Search key is available at middle of array
Option D:	Search key is available anywhere in the array
10	In a Daubha liabad liat and A.
19.	In a Doubly linked list with 2 pointers namely, 'prev' and 'next', and a pointer
	remp pointing to some node except first or last node, which of the following
	statement will delete the element pointed by Temp?

Option A:	Temp->prev->next=Temp->next; Temp->next->prev=Temp->prev; free(temp);
Option B:	Temp->prev->next=Temp->prev; Temp->next->prev=Temp->next; free(temp);
Option C:	Temp->prev->prev=Temp->next; Temp->next->next=Temp->prev; free(temp);
Option D:	Temp->prev->prev=Temp->prev; Temp->next->next=Temp->next; free(temp);
20.	Max .no. of nodes in a binary tree with level 6 are
20. Option A:	Max .no. of nodes in a binary tree with level 6 are 32
20. Option A: Option B:	Max .no. of nodes in a binary tree with level 6 are 32 63
20. Option A: Option B: Option C:	Max .no. of nodes in a binary tree with level 6 are326364

Q2	Solve any Four out of Six5 marks each		
А	Consider marks of 5 subjects of a student represented as singly linked list. Write a C program to compute the total and percentage of the student.		
В	An array contains the elements – 8,13,17,26,44,56,88,97. Using binary search algorithm, trace the steps followed to find numbers 56 & 9. At each step, show the contents of low, high & mid and array after each iteration		
С	Create a Binary Search Tree for the following sequence and write all the 3 traversal sequences from resultant BST: 45,39,56,12,34,78,32,10,89,54,67,81.		
D	Use linear probing, insert the following keys in a hash table of size 11: 15,85,90,54,67,43,76. Find the number of collisions.		
E	Illustrate topological sorting for the following graph:		
F	Define circular queue. Assume a circular queue with a capacity 6, currently having the elements 50 and 70 at locations 2 and 3 respectively. Show with example, the queue full and queue empty conditions by performing necessary operations on circular queue.		

Q3.	Solve any Two Questions out of Three				10 ma	rks each	
	Create a AVL tree for	or the sec	quence:				
	I, N, F, O, R, M, A, '	T, G.					
A	Consider the characters to arrange in alphabetic sequence.						
	Show the tree after each insertion with balance factors.						
	Given the following frequencies for characters, find the Huffman code for all the						
	characters:	-					
В	Character	S	Т	Ι	Ν	G	
	Frequency	9	16	2	30	12	
			•				
С	Define recursion. Di	fferentia	te betwee	n iteratio	n and reci	ursion. W	rite a C program
	to check whether a s	tring is p	alindrom	e or not, v	with the h	elp of stac	ck data structure.

University of Mumbai Examination 2021 under cluster __ (Lead College: _) Examinations Commencing from 15th June 2021 to 26th June 2021 Program: Computer Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III Course Code: CSC301 and Course Name: Engineering Mathematics III Max. Marks: 80

Time: 2 hour _____

Question Number	Correct Option
Q1.	С
Q2.	D
Q3.	А
Q4	С
Q5	В
Q6	С
Q7	D
Q8.	D
Q9.	А
Q10.	В
Q11.	В
Q12.	D
Q13.	С
Q14.	А
Q15.	D
Q16.	В
Q17.	С
Q18.	С
Q19.	D
Q20.	С

University of Mumbai Examination 2021 under cluster __(Lead College: _____) Examinations Commencing from 15th June 2021 to 26th June 2021 Program: Computer Engineering Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III Course Code: CSC301 and Course Name: Engineering Mathematics III Time: 2 hour Max. Marks: 80

Question Number	Correct Option
Q1.	В
Q2.	А
Q3.	D
Q4	С
Q5	А
Q6	С
Q7	D
Q8.	С
Q9.	А
Q10.	С
Q11.	А
Q12.	А
Q13.	А
Q14.	В
Q15.	А
Q16.	D
Q17.	В
Q18.	С
Q19.	А
Q20.	D

University of Mumbai Examination 2021 under cluster __ (Lead College: _) Examinations Commencing from 15th June 2021 to 26th June 2021 Program: Computer Engineering Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: CSC301 and Course Name: Engineering Mathematics III

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks			
1.	$L[\sinh 2t]$ is equal to			
Option A:	2			
	$\overline{s^2+4}$			
Option B:	4			
	$\overline{s^2 - 4}$			
Option C:	2			
	$\overline{s^2 - 4}$			
Option D:	4			
	$\overline{s^2+4}$			
2.	$L[5t^3 + \cos 3t - e^{2t}]$ is equal to			
Option A:	$\frac{30}{30} - \frac{s}{30} - \frac{1}{30}$			
	$s^4 s^2 + 9 s - 2$			
Option B:	15 s 1			
_	$\frac{1}{s^4} + \frac{1}{s^2 + 9} - \frac{1}{s - 2}$			
Option C:	$\frac{15}{14} - \frac{5}{12} - \frac{1}{12}$			
	$s^4 s^2 + 9 s - 2$			
Option D:	30 <i>s</i> 1			
-	$\frac{1}{s^4} + \frac{1}{s^2 + 9} - \frac{1}{s - 2}$			
3.	$L[e^{4t}\sin 3t]$ is equal to			
Option A:	3			
	$\frac{1}{(s-4)^2+9}$			
Option B:	3			
	$(s+4)^2+9$			
Option C:	3			
	$(s-4)^2 + 3$			
Option D:	3			
	$(s+4)^2 + 3$			

4.	If $L[f(t)] = \emptyset(s)$, then $L[\frac{1}{t} f(t)]$ is equal to
Option A:	$\int_{0}^{\infty} \phi(s) ds$
Option B:	$\int_{s}^{\infty} \frac{\phi(s)}{s} ds$
Option C:	$\int_{s}^{\infty} \phi(s) ds$
Option D:	$\int_{0}^{\infty} \frac{\phi(s)}{s} ds$
5.	$L^{-1}\left[\frac{s-b}{(s-b)^2+a^2}\right]$ is equal to
Option A:	$e^{-bt}\cos at$
Option B:	$e^{bt}\cos at$
Option C:	$e^{-bt}\sin at$
Option D:	$e^{bt}\sin at$
6.	If $L[f_1(t)] = \emptyset_1(s)$, $L[f_2(t)] = \emptyset_2(s)$ then By the Convolution Theorem $L^{-1}[\emptyset_1(s) \cdot \emptyset_2(s)] =$
Option A:	$\int_{0}^{\infty} f_1(u) \cdot f_2(t-u) du$
Option B:	$\int_{0}^{t} f_1(u) \cdot f_2(u) du$
Option C:	$\int_{0}^{t} f_1(u) \cdot f_2(t-u) du$
Option D:	$\int_{0}^{\infty} f_{1}(u) \cdot f_{2}(u) du$
7	If $L^{-1}[\phi(s)] = f(t)$ then $L^{-1}[\phi''(s)] =$
Option A:	$-\frac{1}{t}f(t)$
Option B:	$\frac{1}{-f(t)}$
Option C:	t^{\prime}
Option D.	$t^2 f(t)$
Option D.	

8.	$L^{-1}[\log(s+a)] =$			
Option A:	1_{at}			
Option B:	$\left \frac{1}{\rho}-at\right $			
Option C:	$\left -\frac{1}{e^{at}} e^{at} \right $			
Option D:	$\left -\frac{1}{2}e^{-at} \right $			
0				
9.	If the Fourier series of $f(x) = \frac{1}{2}(\pi - x)$ in $[0,2\pi]$ is $\frac{1}{2} + \sum_{n=1}^{\infty} [a_n \cos nx + 1]$			
	$b_n \sin nx$ then what is the value of a_0 .			
Option A:	0			
Option B:	-1			
Option C:	1			
Option D:	N			
10.	If the Fourier Series of $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ 0 & 0 \end{cases}$ is			
	$\pi - 1 \sum_{n=1}^{\infty} (1)^n - 1 = \sum_{n=1}^{\infty} (1)^n$			
	$f(x) = \frac{-n}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{2} \cos nx + \sum_{n=1}^{\infty} \frac{1 - 2(-1)^n}{2} \sin nx$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	then the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ is equal to			
Option A:	π^2			
-1				
Option B:	π^2			
- F	$\left -\frac{\alpha}{2}\right $			
Option C:	π^2			
-1				
Option D:	π^2			
1	$\left -\frac{1}{4}\right $			
11.	If f(x) is an even function in $(-\pi, \pi)$ then in the Fourier series expansion of f(x) in			
	$(-\pi,\pi)$, following is true.			
Option A:	$a_n = 0$			
Option B:	$b_n = 0$			
Option C:	$a_n = b_n = 0$			
Option D:	$a_0 = b_n = 0$			
12.	Determine the constant 'a' if $f(z) = (ax^3 - 6xv^2 + 3x^2 - 3v^2 + x) + $			
	$i(6x^2y - 2y^3 + 6xy + y)$ is analytic.			
Option A:	3			
Option B:	4			
Option C:	-2			
Option D:	2			
•				
13.	If $(x) = (x^3 - 3xy^2) + i(3x^2y - y^3)$, find it's complex derivative.			
Option A:	$f'(z) = 3(y^2 - x^2) + i6xy$			
Option B:	$f'(z) = 3(x^2 + y^2) + i6xy$			
Option C:	$f'(z) = 3(x^2 - y^2) + i6xy$			

Option D:	$f'(z) = 3(x^2 + y^2) - i6xy$				
14.	If $f(z) = u(x, y) + iv(x, y)$ is an analytic function then select the correct option.				
Option A:	Curves $u = c_1 \& v = c_2$ intersects orthogonally.				
Option B:	Curves $u = c_1 \& v = c_2$ never intersects.				
Option C:	Curves $u = c_1 \& v = c_2$ are straight lines.				
Option D:	Curves $u = c_1 \& v = c_2$ are same.				
15.	If the values of two variables deviate in the same direction then the correlation is said to be				
Option A:	Linear correlation				
Option B:	Zero correlation				
Option C:	Negative correlation				
Option D:	Positive correlation				
16.	Karl Pearson's Coefficient of Correlation (r) is given by the following formula				
Option A:	E(XY) - E(X)E(Y)				
	$\left[\left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right] \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right] \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(1$				
	$\int \left[E(X^2) + (E(X)) \right] \left[E(Y^2) + (E(Y))^2 \right]$				
Option B:	E(XY) - E(X)E(Y)				
_	$\sqrt{[F(X^2) - (F(X))^2][F(Y^2) - (F(Y))^2]}$				
Option C:	$\frac{\nabla [E(X)]}{F(X)F(Y)} = F(XY)$				
Option C.					
	$\sqrt{[E(X^2) - (E(X))^2][E(Y^2) - (E(Y))^2]}$				
Option D:	E(XY) + E(X)E(Y)				
	$[E(Y^2) + (E(Y^2))^2][E(Y^2) + (E(Y^2))^2]$				
	$\sqrt{\left[E(X^{2}) + (E(X))\right]\left[E(Y^{2}) + (E(Y))^{2}\right]}$				
17.	If the regression lines are $x + 6y = 6 \& 3x + 2y = 10$ find \overline{x} , \overline{y} .				
Option A:	$\bar{x} = 3, \bar{y} = 2$				
Option B:	$\bar{x} = 2, \bar{y} = 1/2$				
Option C:	$\bar{x} = 3, \bar{y} = 1/2$				
Option D:	$\overline{x} = 1, \overline{y} = 2$				
18.	If two events A & B are independent then following statement is true.				
Option A:	$P(A \cap B) = P(A) + P(B)$				
Option B:	$P(A \cup B) = P(A) \cdot P(B)$				
Option C:	$P(A \cap B) = P(A) \cdot P(B)$				
Option D:	$P(A \cup B) = P(A) + P(B)$				
19.	Suppose the probability distribution of a random variable x is given by				
	X 1 2 3				
	$P(X=x) \qquad k \qquad 1 \qquad 2k$				
	$\kappa + \overline{7}$				
	Obtain k.				
Option A:	-3/7				
Option B:	5/1				
Option C:	-3/14				

Option D:	3/14
20.	Suppose two fair dice are thrown and sum of the numbers on dice is noted. What
	is the probability that the sum can be equal to 6, 7, 8 or 9?
Option A:	2/9
Option B:	4/9
Option C:	5/9
Option D:	7/9

Subjective/descriptive questions

Solve any F	our out of S	ix5 marks e	ach		
Find $L\left[\frac{\cos 2t}{e}\right]$	$\frac{\sin t}{t}$				
Find $L^{-1}\left\{\frac{1}{s^2}\right\}$	$\left\{ \frac{s+2}{-4s+13} \right\}$				
Find the Fou	rier Series of	f $f(x)$ where	$f(x) = x^3$	$in(-\pi,\pi)$	
Determine w	hether the fu	unction $f(z)$	$=(x^3-3x)$	$y^2 + 3x) +$	$i(3x^2y -$
$y^3 + 3y$) is	analytic. If s	o find its der	ivative.		
Fit a straight line to the following data					
Х	0	1	2	3	4
У	1	1.8	3.3	4.5	6.3
The distribut	ion function	of a random	variable X i	s given byF	(x) = 1 -
$(1+x)e^{-x},$	$x \ge 0.$ Obt	ain the proba	ability densit	y function (p	odf) of X.
	Find $L \left[\frac{\cos 2t}{e} \right]$ Find $L^{-1} \left\{ \frac{1}{s^2} \right\}$ Find the Fou Determine w $y^3 + 3y$ is a Fit a straight x y The distribut $(1 + x)e^{-x}$,	Find $L\left[\frac{\cos 2t \sin t}{e^t}\right]$ Find $L^{-1}\left\{\frac{s+2}{s^2-4s+13}\right\}$ Find the Fourier Series of Determine whether the function $y^3 + 3y$ is analytic. If so Fit a straight line to the form $x = 0$ y = 1 The distribution function $(1 + x)e^{-x}, x \ge 0$. Obt	Find $L\left[\frac{\cos 2t \sin t}{e^t}\right]$ Find $L^{-1}\left\{\frac{s+2}{s^2-4s+13}\right\}$ Find the Fourier Series of $f(x)$ where Determine whether the function $f(z)$ $y^3 + 3y$) is analytic. If so find its der Fit a straight line to the following dat x 0 1 y 1 1.8 The distribution function of a random $(1 + x)e^{-x}$, $x \ge 0$. Obtain the proba	Find $L\left[\frac{\cos 2t \sin t}{e^t}\right]$ Find $L^{-1}\left\{\frac{s+2}{s^2-4s+13}\right\}$ Find the Fourier Series of $f(x)$ where $f(x) = x^3$ Determine whether the function $f(z) = (x^3 - 3x)$ $y^3 + 3y$ is analytic. If so find its derivative. Fit a straight line to the following data $x \qquad 0 \qquad 1 \qquad 2 \qquad y \qquad 1 \qquad 1.8 \qquad 3.3$ The distribution function of a random variable X is $(1 + x)e^{-x}, x \ge 0$. Obtain the probability densit	Find $L\left[\frac{\cos 2t \sin t}{e^t}\right]$ Find $L^{-1}\left\{\frac{s+2}{s^2-4s+13}\right\}$ Find the Fourier Series of $f(x)$ where $f(x) = x^3 in(-\pi,\pi)$ Determine whether the function $f(z) = (x^3 - 3xy^2 + 3x) + y^3 + 3y)$ is analytic. If so find its derivative. Fit a straight line to the following data x 0 1 2 3 y 1 1.8 3.3 4.5 The distribution function of a random variable X is given by $F(1+x)e^{-x}$, $x \ge 0$. Obtain the probability density function (p

Q3	Solve any Four out of Six5 marks each							
(20 Marks)								
А	Find <i>L</i> [(1 +	$te^{-t})^{3}]$						
В	Find $L^{-1}\left\{\frac{1}{s}\right\}$	$\frac{1}{(s^2+a^2)}$	}					
С	Find the half	f range c	cosine	series for f	$(x) = \begin{cases} 2\\ -2 \end{cases}$	$0 < x$ $\frac{a}{2} < x$	$\begin{array}{l} x < \frac{a}{2} \\ x < a \end{array}$	
D	Show that th	e function	on $u =$	$= x^3 - 3xy$	$x^{2} + 3x^{2} - 3$	$y^2 + 1$	l is ha	rmonic.
	Compute a S	Spearma	n's co	efficient of	rank correlat	tion for	r the g	iven data
Е	Х	3		6	4	5		7
	у	2		4	5	3		6
	A random va	ariable X	has fo	ollowing pro	bability dist	ributic	on	
_	Х	-	-2		0		1	
F	P(X=x)		1/3		1/2		1/6	
	What is the	moment	genera	ating function	on of X			

Examination 2021 under cluster __(Lead College: _____

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019 'C' Scheme

Examination: SE Semester III

Course Code: CSC301 and Course Name: Engineering Mathematics III

Time: 2 hour

Max. Marks: 80

)

Choose the correct option for following questions. All the Questions are **Q1**. compulsory and carry equal marks 1. The Laplace Transform of $t.e^{at}$ Option A: 1 S Option B: 1 $\overline{(s-a)^2}$ 1 Option C: $\overline{(s+a)^2}$ Option D: 1 $\overline{s^2}$ 2 $e^{-t}\sin t$ Find L t Option A: $\cot^{-1}(s+1)$ Option B: $\tan^{-1}(s+1)$ $\tan^{-1}(s-1)$ Option C: Option D: $\cot^{-1} s$ 3 Given $f(t) = \frac{\sin t}{2}$, find $L\{f'(t)\}$ $s \cot^{-1} s$ Option A: Option B: $s \cot^{-1} s + 1$ Option C: $\tan^{-1} s - 1$ Option D: $s \cot^{-1} s - 1$ 4 Find the Laplace transform of $\int_{0}^{t} \frac{\sin u}{u} du$ $\frac{1}{-}$ tan⁻¹ s Option A: s Option B: $\cot^{-1} s$ $\overline{\frac{1}{2}}$ cot⁻¹ s Option C: S $\tan^{-1} s$ Option D:

5	Find $L^{-1}\left[\frac{s+2}{s^2+4s+7}\right]$
Option A:	e^{-2t} .cos $\sqrt{3}t$
Option B:	e^{-2t} .cos $\sqrt{2}t$
Option C:	e^{-2t} .cos ² t
Option D:	$e^{-2t} \sin \sqrt{3}t$
-	
6	Find $L^{-1}\left[\frac{3s+4}{s^2+16}\right]$
Option A:	$4.\sin 4t + \cos 4t$
Option B:	$\cos 4t + \sin 3t$
Option C:	$3.\cos 4t + \sin 4t$
Option D:	$\sin 3t + \cos 4t$
	Find the Inverse Laplace transform of $\frac{1}{s.(s+a)}$
Option A:	$1+e^{-at}$
	\overline{a}
Option B:	e^{-at}
Option C:	$e^{-at}+1$
Option D:	$1-e^{-at}$
	\boxed{a}
8	If $L\{f_1(t)\} = F_1(s)$ and $L\{f_2(t)\} = F_2(s)$ then by Convolution theorem $L^{-1}[F_1(s) * F_2(s)]$
Option A:	$\int_{0}^{\infty} f_1(u) \cdot f_2(t-u) du$
Option B:	$\int_{0}^{t} f_1(u) \cdot f_2(u) du$
Option C:	$\int_{0}^{t} f_1(u) \cdot f_2(t-u) du$
Option D:	$\int_{0}^{\infty} f_1(u) \cdot f_2(u) du$
9 Ontion A	In half range <i>sine</i> Fourier series, we assume the function to be
Option A:	Udd function
Option B:	Both even and odd
Option D:	Can be anything
Option D.	

10	The Fourier co-efficient a_n for the function $f(x) = x^2$ in $(0,2\pi)$ is given by
Option A:	n
_	$\frac{1}{4\pi}$
Option B:	3π
	$\overline{n^2}$
Option C:	4π
	\overline{n}
Option D:	3π
	$\overline{n^3}$
11	If $f(x) = \cos x$ defined in $(-\pi, \pi)$ then the value Fourier coefficient b_n is
Option A:	0
Option B:	π
Option C:	$\frac{n}{(m^2-1)}$
Option D:	(n^2-1)
Option D.	$\left[\frac{2n}{(n^2-1)}\left[(-1)^n-1\right]\right]$
	(n-1)
12	If $f(z) = e^{z}$ is an analytic function, then real part is given by
Option A:	$e^x \cos y$
Option B:	cos y
Option C:	$-e^x \sin y$
Option D:	sin y
-	
13	A function $u(x, y)$ is harmonic if and only if,
Option A:	$u_{xx} + u_{yy} = 0$
Option B:	$u_x + u_y = 0$
Option C:	$u_{xy} + u_{yx} = 0$
Option D:	$u_x - u_y = 0$
14	If $f(z)$ is an analytic and $ f(z) $ is constant then $f(z)$ is
Ontion A:	$\frac{1}{1} \int \left(\frac{1}{2} \right)^{1/2} \int \left(\frac{1}{2}$
Option A:	namionic
Option C.	orthogonal
Option D:	conjugate
opuonizi	
15	A readom variable V has machability distribution with $\Gamma(V) = 1.5 - \Gamma(V^2) = 2.4$
13	A random variable A has probability distribution with $E(X)=1.5$, $E(X^2)=3$ then then variance is
Option A.	
Option R.	1.5
Option C:	3
Option D:	5.25
•	

16	A continuous random variable <i>X</i> has the probability density function
	$f(x) = kx^2$ $0 \le x \le 2$ Determine k
	$f(x) = kx$, $0 \le x \le 2$. Determine k
Option A:	5
	8
Option B:	$\frac{2}{2}$
	8
Option C:	8
	3
Option D:	$\frac{3}{9}$
	8
17	If X_1 has mean 4 and variance 9 and X_2 has mean -2 variance 4, and the two
	are independent, find $V(2X_1 + X_2 - 3)$
Option A:	3
Option B:	41
Option C:	14
Option D:	36
10	
18 Ontion A:	The limits for coefficient of correlation are $1 < r < 2$
Option R:	$-1 \leq l \leq 2$.
Option B:	$-1 \leq r \leq 0$.
Option C:	$-1 \leq r \leq 1$
Option D:	$0 \le r \le 1.$
19	If $b_{\text{reg}} = 0.7764$, $b_{\text{reg}} = 1.2321$ then coefficient of correlation
Option A:	0.9781
Option B:	0.6291
Option C:	1.2307
Option D:	0.0023
20	If the tangent of the angle made by the line of regression of y on x is 0.6 and
	$\sigma_y = 2\sigma_x$, find the correlation coefficient between x and y.
Option A:	<i>r</i> = 0.25
Option B:	r = 0.15
Option C:	r = 0.2
Option D:	<i>r</i> = 0.3

Subjective / Descriptive questions

Q2	Solve any Four out of Six. 5 marks each
(20 Marks)	
А	Find the Laplace transform of $\cos t \cdot \cos 2t \cdot \cos 3t$
В	Using convolution theorem find the Inverse Laplace transform of $\frac{s^2}{(s^2 + a^2)^2}$
С	Find the Fourier expansion of $f(x) = x + x^2$; $-\pi \le x \le \pi$ and $f(x + 2\pi) = f(x)$
	Find k & then $E(X)$, if X has the probability density function
D	$f(x) = \begin{cases} kx(2-x), & 0 \le x \le 2, k > 0\\ 0, & otherwise \end{cases}$
Е	Find an analytic function $f(z)$ whose imaginary part is $e^{-x}(y \sin y + x \cos y)$
	Obtain the rank correlation coefficient from the following data
F	X : 10, 12, 18, 18, 15, 40
	Y : 12, 18, 25, 25, 50, 25

Q3	Solve any Four out of Six. 5 marks each
(20 Marks)	
А	By using Laplace transform, evaluate $\int_{0}^{\infty} e^{-t} \left(\frac{\cos 3t - \cos 2t}{t} \right) dt$
В	Find the inverse Laplace transform of $\tan^{-1}\left(\frac{2}{s^2}\right)$
С	Find the orthogonal trajectory of the family of curves $x^3y - xy^3 = c$
D	A random variable X has the following probability function X: 1 2 3 4 5 6 7 $P(X = x)$: k 2k 3k k^2 $k^2 + k$ $2k^2$ $4k^2$ Find i) k and ii) $P(X < 5)$
E	Obtain the expansion of $f(x) = x(\pi - x)$; $0 < x < \pi$ as a half-range cosine series.
F	Fit a straight line of the form $y = a + bx$ to the following data & estimate the value of y for $x = 3.5$ x : 0 1 2 3 4 y : 1 1.8 3.3 4.5 6.3