Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester III

Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	А
Q2.	А
Q3.	D
Q4	D
Q5	А
Q6	В
Q7	В
Q8.	D
Q9.	С
Q10.	D
Q11.	А
Q12.	С
Q13.	А
Q14.	А
Q15.	А
Q16.	В
Q17.	В
Q18.	А
Q19.	В
Q20.	D

Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester III

Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

Max. Marks: 80

Subjective/Descriptive questions

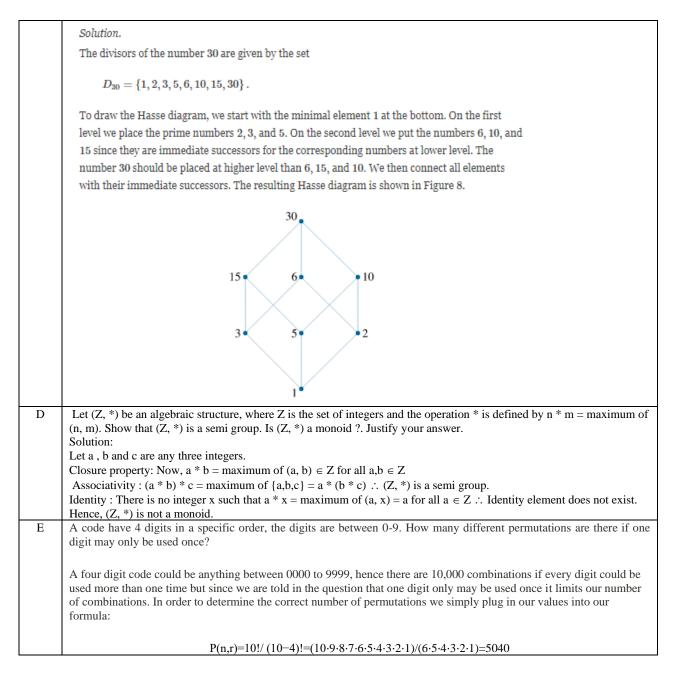
Q2. 20 M	Solve any Four out of Six 5 marks each
A	A survey in 1986 asked households whether they had a VCR, a CD player or cable TV. 40 had a VCR. 60 had a CD player; and 50 had cable TV. 25 owned VCR and CD player. 30 owned a CD player and had cable TV. 35 owned a VCR and had cable TV. 10 households had all three. How many households had at least one of the three? Solution: let <i>V</i> be the set of households with a VCR. Let <i>C</i> be the set of households with a CD player. Let <i>T</i> be the set of households with cable TV. The question is asking for $ V \cup C \cup T $. By inclusion-exclusion, that is equal to $ V + C + T - V \cap C - V \cap T - C \cap T + V \cap C \cap T $ Therefore, $ V \cup C \cup T = 40 + 60 + 50 - 25 - 30 - 35 + 10 = 70$
В	Example: Prove by mathematical induction that for all positive integers <i>n</i>
	$1 + 2 + 3 + \ldots + n = n(n + 1)/2$
	Solution: 1) For $n = 1$, we have $1 = 1 \cdot (1 + 1)/2 = 1$, therefore $P(1)$ holds,
	2) Assume that the statement is true for a particular value $n = k$, that is
	$1 + 2 + 3 + \ldots + k = k(k + 1)/2$
	3) Prove that the sum is true for $n = k + 1$, that is
	$1 + 2 + 3 + \ldots + (k + 1) = (k + 1)(k + 2)/2$
	If, to the left and right side of the equality 2) we add $k + 1$ increased is given series by next term
	$1 + 2 + 3 + \ldots + k + (k + 1) = k(k + 1)/2 + (k + 1) = [k(k + 1) + 2(k + 1)]/2 = (k + 1)(k + 2)/2$
	therefore, the given statement is true for all positive integers.
С	Let D_{30} be the divisors of 30. Draw the Hasse diagram for $(D_{30},)$, where " " represents the divisibility relation.

Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016


Examination: SE Semester III

Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

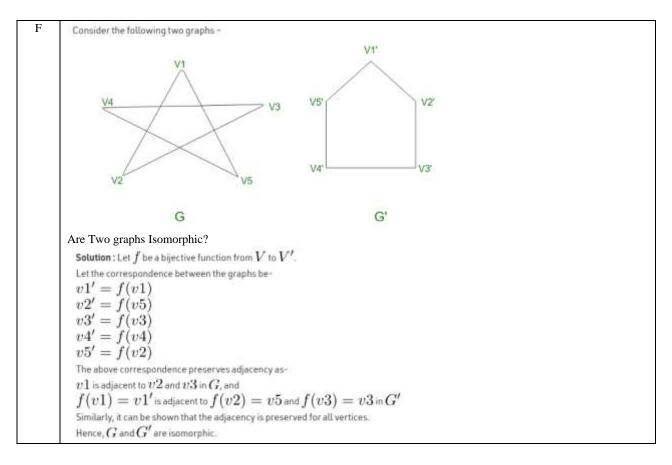
Max. Marks: 80

Subjective/Descriptive questions

University of Mumbai Examination 2020 under cluster 4(Lead College: PCE, New Panvel) Examinations Commencing from 7th January 2021 to 20th January 2021 Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester III


Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

Max. Marks: 80

Subjective/Descriptive questions

Q3. 20M	Solve any Four Questions out of Six	5 marks each
А	Find g o f and f o g if f: $R \rightarrow R$ and g: $R \rightarrow R$ are given by $f(x) =$	cosx and $g(x)=3x^2$. Show that g o f \neq f o g.

Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester III

Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

Max. Marks: 80

Subjective/Descriptive questions

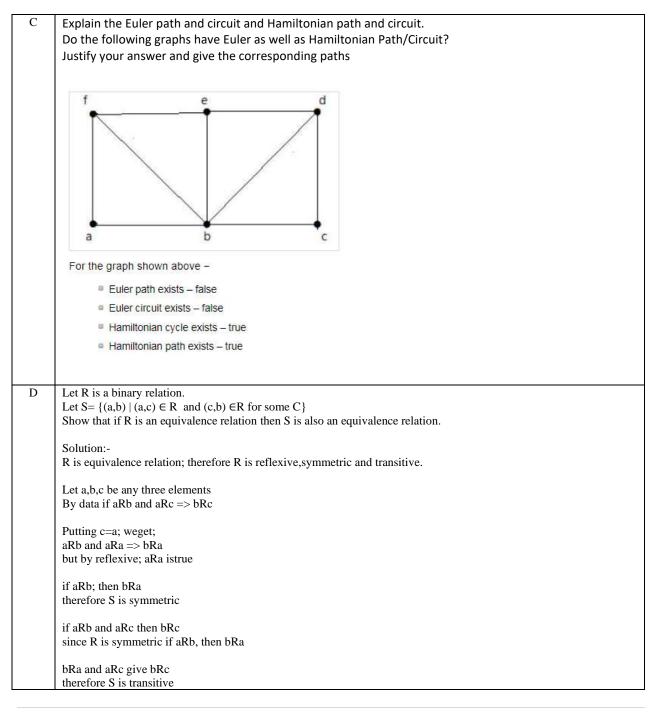
	ANSWER	
	Given that $f(x)=\cos x$ and $g(x)=3x^2$	
	Given $\mathrm{f}:\mathrm{R} ightarrow\mathrm{R}$ and $\mathrm{g}:\mathrm{R} ightarrow\mathrm{R}$,	
	$\therefore f \circ g: R \rightarrow R \text{ and } g \circ f: R \rightarrow R$	
	$f \circ g(x) = f(g(x)) = f(3x^2) = \cos(3x^2)$	
	$g \circ f(x) = g(f(x)) = g(\cos x) = 3\cos^2 x$	
	Since $\cos(3x^2) \neq 3\cos^2 x$.	
	\therefore g o f \neq f o g	
В	Let z denote the set of the integers {0,1,2,,n-1}. Let * be a binary operation on z _n denote such that a*b= the reminde of ab divided by n i) Construct the table for the operation O for n=4 ii) Show that(z _n ,*) is a semigroup for any n Solution (i).Table for the operation * for n=4	
	$(a*b) \in zn$ (a*4 b) *4 c=a*4 (b*4 c)	
	Let a=1; b=2; c=3 (1*4 2) *4 3=1*4 (2*4 3) 2*4 3 = 1*4 (2) 2=2	
	Is associative operation From above deduction;(z,*) is semigroup.	

Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016


Examination: SE Semester III

Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

Max. Marks: 80

Subjective/Descriptive questions

Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester III

Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

Max. Marks: 80

Subjective/Descriptive questions

	S is reflexive, symmetric and transitive	
	Therefore S is equivalence relation.	
Е	Find the complete solution of the recurrence relation	
	$a_n + 2 a_{n-1} = n+3$ for $n \ge 1$ and with $a_0 = 3$	
	Solution	
	B = <u>16</u>	
	B =	
	16 n 11	
	Required solution:- $a_n = \frac{16}{9}(-2)^n + \frac{n}{3} + \frac{11}{9}$	
F	Use the laws of logic to show that	
	$[(p \rightarrow q)^{\Lambda} \rightarrow q] \rightarrow p$ is a tautology	
	$[(p \rightarrow q) \rightarrow p $ is a random by	
	Solution:-	
	LHS:- $[(p \rightarrow q)^{\wedge} q] \rightarrow p$	
	$ \begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n$	
	$ \sim [(p \lor q)^{-q}] \lor p \lor q = -p \lor q] $	
	$ \begin{array}{cccc} \sim [(\sim p_{A} \sim q)v(q_{A} \sim q]v \sim p & \dots & [distributive] \\ \sim [(\sim p_{A} \sim q)vF]v \sim p & \dots & \dots & [p_{A} \sim p=F] \end{array} $	
	$\sim [(\sim p_{\Lambda} \sim q)] v \sim p \qquad \dots \dots [p_{\Lambda} F = p]$	
	$[\sim(\sim p)_{\Lambda}\sim(\sim q)]_{V\sim p} \qquad $	
	[pvq]v~p~(~p)= p	
	(pv~p)vq[associative]	
	Tvq[pv~p=T]	
	T	
	$[(p \rightarrow q)^{\wedge} - q] \rightarrow -p$ Is a tautology	

Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: SE Semester III

Course Code: CSC303 and Course Name: Discrete Mathematics

Time: 2 hour

Q1.Choose the correct option for following questions. All the Questions are compulsory and carry equal marks1.Power set of empty set has exactly subset.Option A:OneOption B:TwoOption D:Zero2.The compound propositions p and q are called logically equivalent if is a tautology.Option A: $p \leftrightarrow q$ Option C: $\neg (p \lor q)$ Option D: $p \rightarrow q$ Option D: $\neg p \lor q$ Option C: $\neg (p \lor q)$ Option D: $\neg p \lor q$ Option C: $\neg (p \lor q)$ Option A: $p \leftrightarrow q$ Option D: $\neg p \lor q$ Option D: $\neg p \lor q$ Option C: $\neg (p \lor q)$ Option C: $(4.4), (1.2), (2.2), (2.3)$ Option C: $\{(4.4), (1.2), (2.2), (3.3)$ Option C: $\{a.b.c.\}, [c.d]$ Option B: $\{a.b.c.\}, [c.d]$ Option C: $\{a.b.c.\}, [c.d]$ Option B: $\{a.b.c.\}, [c.d]$ Option C: $\{a.b.a.b.c.d,]$ for the following are toxed simultaneously, in		
Option A:OneOption B:TwoOption C:ThreeOption D:Zero2.The compound propositions p and q are called logically equivalent if is a tautology.Option A: $p \leftrightarrow q$ Option B: $p \rightarrow q$ Option C: $\neg (p \lor q)$ Option C: $\neg (p \lor q)$ Option A: $p \leftrightarrow q$ Option B: $p \rightarrow q$ Option C: $\neg (p \lor q)$ Option C: $\neg (p \lor q)$ Option C: $(4,4),(1,2),(2,2),(2,3)$ Option B: $\{(3,3),(1,1),(2,2),(3,3)\}$ Option D: $\{(5,5),(1,1),(2,2),(3,3)\}$ Option A: $\{a,b\},(a,b,c),(c,d)$ Option B: $\{a,b,c\},(c,d)$ Option C: $\{a,b,1,(d,c,b)$ Option B: $\{a,b,c\},(c,d)$ Option C: $\{a,b,1,(d,c,b)$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d,c,d\}$ Option B: $\{a,b,c,c,d,c,d\}$ Option B: $\{a,b,c,c,d,c,d\}$ Option B: $\{a,b,c,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c,d$	Q1.	
Option A:OneOption B:TwoOption C:ThreeOption D:Zero2.The compound propositions p and q are called logically equivalent if is a tautology.Option A: $p \leftrightarrow q$ Option B: $p \rightarrow q$ Option C: $\neg (p \lor q)$ Option C: $\neg (p \lor q)$ Option A: $p \leftrightarrow q$ Option B: $p \rightarrow q$ Option C: $\neg (p \lor q)$ Option C: $\neg (p \lor q)$ Option C: $(4,4),(1,2),(2,2),(2,3)$ Option B: $\{(3,3),(1,1),(2,2),(3,3)\}$ Option D: $\{(5,5),(1,1),(2,2),(3,3)\}$ Option A: $\{a,b\},(a,b,c),(c,d)$ Option B: $\{a,b,c\},(c,d)$ Option C: $\{a,b,1,(d,c,b)$ Option B: $\{a,b,c\},(c,d)$ Option C: $\{a,b,1,(d,c,b)$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d\}$ Option B: $\{a,b,c,c,d,c,d\}$ Option B: $\{a,b,c,c,d,c,d\}$ Option B: $\{a,b,c,c,d,c,d\}$ Option B: $\{a,b,c,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c,d$	1	Power set of empty set has exactly subset
Option B: Option C:Two ThreeOption D: ZeroZero2.The compound propositions p and q are called logically equivalent if is a tautology.Option A: Option B: $p \rightarrow q$ Option D: Option D: $\neg (p V q)$ Option D: Option A: $\{(5,5), (1,1), (2,2), (2,3)\}$ Option A: ($\{(5,5), (1,1), (2,2), (3,3)\}$ Option D: Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ Option C: ($\{(4,4), (1,2), (2,2), (3,3)\}$ Option D: ($\{(5,5), (1,1), (2,2), (3,3)\}$ Option D: ($\{(5,5), (1,1), (2,2), (3,3)\}$ Option C: ($\{(4,b,c,c), \{c,d\}$ Option B: ($\{(3,b,c), \{c,d\}$ Option A: ($\{a,b,c\}, \{c,d\}$ Option D: ($\{a,b,c\}, \{d,c\}$ Option D: ($\{a,b,c\}, \{d,c\}$ Option D: ($\{a,b,c\}, \{d,c\}$ Option D: ($\{b,a\}, \{d,c\}$ Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption A: equivalence relationOption D: ($\{b,a\}, \{d,c\}$ Option D: ($\{b,a\}, \{d,c\}, \{d,c\}$		
Option C:ThreeOption D:Zero2.The compound propositions p and q are called logically equivalent if is a tautology.Option A: $p \leftrightarrow q$ Option B: $p \rightarrow q$ Option D: $\neg (p \lor q)$ Option D: $\neg p \lor \neg q$ 3.Which of the following relations is the reflexive relation over the set {1, 2, 3, 5}?Option A:{(5,5), (1,1), (2,2), (2,3)}Option B:{(3,3), (1,1), (2,2), (2,3)}Option C:{(4,4), (1,2), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(4,b), (a,b,c), {(c,d)}Option A:{(a,b), (4,c,b)}Option D:{(b,a), {(d,c)}5.Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption B:irreflexive relationOption B:irreflexive relationOption B:irreflexive relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28		
Option D:Zero2.The compound propositions p and q are called logically equivalent if is a tautology.Option A: $p \leftrightarrow q$ Option B: $p \rightarrow q$ Option D: $\neg (p \lor q)$ Option D: $\neg p \lor \neg q$ 3.Which of the following relations is the reflexive relation over the set {1, 2, 3, 5}?Option A:{(5,5), (1,1), (2,2), (2,3)}Option B:{(3,3), (1,1), (2,2), (5,2)}Option C:{(4,4), (1,2), (2,2), (3,3)}Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Quiton D:{(5,5), (1,1), (2,2), (3,3)}Quiton A:{(a,b), (a,b,c), {(c,d)}Option B:{(a,b), (4,c,b)}Option D:{(b,a), {(d,c)}S.Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption B:irreflexive relationOption B:irreflexive relationOption D:equivalence relationOption B:irreflexive relationOption B:irreflexive relationOption C:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option C:28	-	
2.The compound propositions p and q are called logically equivalent if is a tautology.Option A: $p \leftrightarrow q$ Option B: $p \rightarrow q$ Option D: $\neg p \lor q$ Option D: $\neg p \lor q$ Option A: $\{(5,5), (1,1), (2,2), (2,3)\}$ Option A: $\{(5,5), (1,1), (2,2), (2,3)\}$ Option B: $\{(3,3), (1,1), (2,2), (5,2)\}$ Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ Option A: $\{(4,4), (1,2), (2,2), (3,3)\}$ Option A: $\{(a,b), (1,1), (2,2), (3,3)\}$ Option A: $\{(a,b), (1,1), (2,2), (3,3)\}$ Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ Option A: $\{(a,b), (1,0), (2,2), (3,3)\}$ Option D: $\{(b,c), (c,d)\}$ Option D: $\{(a,b), (4,c), (2,c), (3,c), (2,c), $		
a tautology.Option A:p ↔ qOption B:p → qOption C:¬(p ∨ q)Option D:¬p ∨ ¬q3.Which of the following relations is the reflexive relation over the set {1, 2, 3, 5}?Option A:{(5,5), (1,1), (2,2), (2,3)}Option B:{(3,3), (1,1), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(a,b), (a,b,c), {c,d}Option D:{(a,b), (a,b,c), {c,d}Option D:{(a,b), (d,c,b)Option D:{(b,a), {d,c,b}Option D:{(b,a), {d,c,b}Option D:{(b,a), {d,c,b}Option D:{(b,a), {d,c,b}Option D:{(b,a), {d,c,b}Option A:{(a,b), {d,c,b}Option B:{(a,b), {d,c,b}Option B:{(c, 2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28	Option D:	Zeio
Option B: $p \rightarrow q$ Option C: $\neg (p \lor q)$ Option D: $\neg p \lor \neg q$ 3.Which of the following relations is the reflexive relation over the set {1, 2, 3, 5}?Option A:{(5,5), (1,1), (2,2), (2,3)}Option B:{(3,3), (1,1), (2,2), (5,2)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(s,b,c), (c,d)}Option B:{a,b,c}, {c,d}Option B:{a,b,c}, {c,d}Option D:{b,a,d,c,b}Option D:{b,a,d,c,b}Option D:{b,a,d,c,b}Option B:{a,b,c}, {c,d}Option B:{a,b,c,d,c,b}Option D:{b,a,d,c,b}Option D:{b,a,d,c,b}Option D:{b,a,d,c,b}Option B:{a,b,c,d,c,b}Option C:suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption D:empty relationOption D:empty relationOption B:irreflexive relationOption D:empty relationOption B:11Option B:11Option C:28	2.	
Option C: \neg (p V q)Option D: \neg p V \neg q3.Which of the following relations is the reflexive relation over the set {1, 2, 3, 5}?Option A:{(5,5), (1,1), (2,2), (2,3)}Option B:{(3,3), (1,1), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}Option B:{(a,b,c,}, {c,d}Option B:{(a,b,c,}, {c,d}Option C:{(a,b,c,}, {c,d}Option D:{(b,a,}, {d,c,b)}Option D:{(b,a,}, {d,c,b)}Option B:{(a,b,c,}, {c,d}Option D:{(b,a,}, {d,c,b)}Option C:{(a,b,c,}, {(c,d)Option B:{(a,b,c,}, {c,d)Option B:{(a,b,c,b,c,b)}Option D:{(b,a,}, {d,c,b)}Option D:wpmetric relationOption B:irreflexive relationOption C:symmetric relationOption D:equivalence relationOption D:empty relationOption A:17Option B:11Option C:28	Option A:	$p \leftrightarrow q$
Option D: $\neg p \lor \neg q$ 3.Which of the following relations is the reflexive relation over the set {1, 2, 3, 5}?Option A:{(5,5), (1,1), (2,2), (2,3)}Option B:{(3,3), (1,1), (2,2), (5,2)}Option D:{(4,4), (1,2), (2,2), (3,3)}Option D:{(5,5), (1,1), (2,2), (3,3)}4.Determine the partitions of the set {a,b,c,d} from the following subsets.Option A:{a,b,(a,b,c),{c,d}Option B:{a,b,c,},{c,d}Option D:{b,a},{d,c,b}Option D:{b,a},{d,c,b}5.Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption C:symmetric relationOption D:when four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option B:11Option C:28	Option B:	$p \rightarrow q$
3.Which of the following relations is the reflexive relation over the set $\{1, 2, 3, 5\}$?Option A:{ $(5,5), (1,1), (2,2), (2,3)$ }Option B:{ $(3,3), (1,1), (2,2), (5,2)$ }Option C:{ $(4,4), (1,2), (2,2), (3,3)$ }Option D:{ $(5,5), (1,1), (2,2), (3,3)$ }4.Determine the partitions of the set { a,b,c,d } from the following subsets.Option B:{ $a,b, (a,b,c), \{c,d\}$ Option D:{ $\{a,b,c,b,c,d\}$ Option C:{ $\{a,b,c,b,c,d\}$ Option D:{ $\{b,a,d,c,b\}$ Option D:{ $\{b,a,d,c,b\}$ Option D:{ $\{b,a,d,c,b\}$ Option D:{ $\{b,a,d,c,b\}$ Option B:irreflexive relation R = { $(2, 2), (5, 5), (5, 2), (7, 7), \}$ on S = { $2, 5, 7$ }. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption C:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option B:11Option C:28	Option C:	$\neg (p \lor q)$
3.Which of the following relations is the reflexive relation over the set $\{1, 2, 3, 5\}$?Option A:{ $\{(5,5), (1,1), (2,2), (2,3)\}$ Option B:{ $\{(3,3), (1,1), (2,2), (5,2)\}$ Option C:{ $\{(4,4), (1,2), (2,2), (3,3)\}$ Option D:{ $\{(5,5), (1,1), (2,2), (3,3)\}$ 4.Determine the partitions of the set { a,b,c,d } from the following subsets.Option A:{ $a,b,(a,b,c), \{c,d\}$ Option B:{ $\{a,b,c,\}, \{c,d\}$ Option D:{ $\{b,a\}, \{d,c,b\}$ Option D:{ $\{b,a\}, \{d,c,b\}$ 5.Suppose a relation R = { $\{(2, 2), (5, 5), (5, 2), (7, 7), \}$ on S = { $2, 5, 7$ }. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption C:symmetric relationOption C:symmetric relationOption D:empty relationOption A:equivalence set on solution of the coins will turn up as heads.Option B:irreflexive of the coins will turn up as heads.Option A:17Option B:11Option C:28	Option D:	
Option A: $\{(5,5), (1,1), (2,2), (2,3)\}$ Option B: $\{(3,3), (1,1), (2,2), (5,2)\}$ Option C: $\{(4,4), (1,2), (2,2), (3,3)\}$ Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ A Determine the partitions of the set $\{a,b,c,d\}$ from the following subsets. Option A: $\{a,b,(a,b,c), \{c,d\}$ Option D: $\{a,b,c,k,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{b,a,d,c,c,d\}$ Option D: $\{b,a,d,c,c,d\}$ Option D: $\{b,a,d,c,c,d\}$ Option D: $\{b,a,d,c,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c$		
Option A: $\{(5,5), (1,1), (2,2), (2,3)\}$ Option B: $\{(3,3), (1,1), (2,2), (5,2)\}$ Option C: $\{(4,4), (1,2), (2,2), (3,3)\}$ Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ A Determine the partitions of the set $\{a,b,c,d\}$ from the following subsets. Option A: $\{a,b,(a,b,c), \{c,d\}$ Option D: $\{a,b,c,k,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{a,b,d,c,b,c,d\}$ Option D: $\{b,a,d,c,c,d\}$ Option D: $\{b,a,d,c,c,d\}$ Option D: $\{b,a,d,c,c,d\}$ Option D: $\{b,a,d,c,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c,d,c$	3.	Which of the following relations is the reflexive relation over the set $\{1, 2, 3, 5\}$?
Option C: $\{(4,4), (1,2), (2,2), (3,3)\}$ Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ 4.Determine the partitions of the set $\{a,b,c,d\}$ from the following subsets.Option A: $\{a,b\}, (a,b,c\}, \{c,d\}$ Option B: $\{a,b,c\}, \{c,d\}$ Option D: $\{b,a\}, \{d,c,b\}$ Option D: $\{b,a\}, \{d,c\}$ 5.Suppose a relation R = $\{(2, 2), (5, 5), (5, 2), (7, 7), \}$ on S = $\{2, 5, 7\}$. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption D:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28	Option A:	
Option C: $\{(4,4), (1,2), (2,2), (3,3)\}$ Option D: $\{(5,5), (1,1), (2,2), (3,3)\}$ 4.Determine the partitions of the set $\{a,b,c,d\}$ from the following subsets.Option A: $\{a,b\}, (a,b,c\}, \{c,d\}$ Option B: $\{a,b,c\}, \{c,d\}$ Option D: $\{b,a\}, \{d,c,b\}$ Option D: $\{b,a\}, \{d,c\}$ 5.Suppose a relation R = $\{(2, 2), (5, 5), (5, 2), (7, 7), \}$ on S = $\{2, 5, 7\}$. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption D:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28	Option B:	
Option D: {(5,5), (1,1), (2,2), (3,3)} 4. Determine the partitions of the set {a,b,c,d} from the following subsets. Option A: {a,b},(a,b,c},{c,d} Option B: {a,b,c},{c,d} Option C: {a,b},{d,c,b} Option D: {b,a},{d,c} 5. Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known as Option B: irreflexive relation Option C: symmetric relation Option D: equivalence relation Option D: empty relation 6. When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option B: 11 Option C: 28	· · · · · · · · · · · · · · · · · · ·	$\{(4,4), (1,2), (2,2), (3,3)\}$
4. Determine the partitions of the set {a,b,c,d} from the following subsets. Option A: {a,b},(a,b,c),{c,d} Option D: {a,b},{d,c,b} Option D: {b,a},{d,c,b} Option A: gapsage a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known as Option A: equivalence relation Option B: irreflexive relation Option C: symmetric relation Option D: empty relation 6. When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option A: 17 Option B: 11 Option C: 28		
Option A: {a,b},(a,b,c},{c,d} Option B: {a,b,c},{c,d} Option C: {a,b},{d,c,b} Option D: {b,a},{d,c} Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known as Option A: equivalence relation Option B: irreflexive relation Option C: symmetric relation Option D: empty relation Option D: empty relation Option A: equivalence set essed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option A: 17 Option B: 11 Option C: 28	•	
Option A: {a,b},(a,b,c},{c,d} Option B: {a,b,c},{c,d} Option C: {a,b},{d,c,b} Option D: {b,a},{d,c} Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known as Option A: equivalence relation Option B: irreflexive relation Option C: symmetric relation Option D: empty relation Option D: empty relation Option A: equivalence set essed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option A: 17 Option B: 11 Option C: 28	4.	Determine the partitions of the set {a,b,c,d} from the following subsets.
Option B:{a,b,c},{c,d}Option C:{a,b},{d,c,b}Option D:{b,a},{d,c}5.Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption C:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28	Option A:	
Option C:{a,b},{d,c,b}Option D:{b,a},{d,c}5.Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption C:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28		
Option D:{b,a},{d,c}5.Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known asOption A:equivalence relationOption B:irreflexive relationOption C:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28		
5. Suppose a relation R = {(2, 2), (5, 5), (5, 2), (7, 7), } on S = {2, 5, 7}. Here R is known as Option A: equivalence relation Option B: irreflexive relation Option C: symmetric relation Option D: empty relation 6. When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option B: 11 Option C: 28		
known as Option A: equivalence relation Option B: irreflexive relation Option C: symmetric relation Option D: empty relation 6. When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option A: 17 Option B: 11 Option C: 28		
Option B:irreflexive relationOption C:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28	5.	
Option B:irreflexive relationOption C:symmetric relationOption D:empty relation6.When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28	Option A:	equivalence relation
Option C: symmetric relation Option D: empty relation 6. When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option A: 17 Option B: 11 Option C: 28		
Option D: empty relation 6. When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option A: 17 Option B: 11 Option C: 28		
6. When four coins are tossed simultaneously, in number of the outcomes at most two of the coins will turn up as heads. Option A: 17 Option B: 11 Option C: 28		
at most two of the coins will turn up as heads.Option A:17Option B:11Option C:28		
Option B: 11 Option C: 28	6.	
Option C: 28	Option A:	17
Option C: 28	Option B:	11
Option D: 43		28
	Option D:	43

7.	A directed graph or digraph can have directed cycle in which
Option A:	starting node and ending node are different
Option B:	starting node and ending node are same
Option C:	minimum four vertices can be there
Option D:	ending node does not exist
1	0
8.	What is a complete digraph?
Option A:	connection of nodes without containing any cycle
Option B:	connecting nodes to make at least three complete cycles
Option C:	start node and end node in a graph are same having a cycle
Option D:	connection of every node with every other node including itself in a digraph
9.	Which of the following two sets are equal?
Option A:	A = $\{1, 2\}$ and B = $\{1, 1\}$
Option B:	$A = \{1, 2\}$ and $B = \{1, 3\}$
Option C:	$A = \{1, 2, 3\}$ and $B = \{2, 1, 3\}$
Option D:	A = $\{1, 2, 4\}$ and B = $\{1, 2, 3\}$
10	$\mathbf{L} = \mathbf{D} \left($
10.	Let P (x) denote the statement " $x \ge 5$." Which of these have truth value true?
Option A:	P(0)
Option B:	P (1) P (2)
Option C: Option D:	P (2) P (9)
Option D.	F (9)
11.	The number of symmetric relations on a set with 4 distinct elements is
Option A:	2 ⁹
Option B:	$\frac{1}{2^{3}}$
Option C:	2^4
Option D:	2^{12}
-	
12.	How many two-digit numbers can be made from the digits 1 to 9 if repetition is
	allowed?
Option A:	9
Option B:	18
Option C:	81
Option D:	99
13.	The graph representing universal relation is called
Option A:	complete digraph
Option B:	partial digraph
Option C:	empty graph
Option D:	partial subgraph
1 /	A non ampty set A is termed as an algebraic structure
14.	A non empty set A is termed as an algebraic structure
Option A: Option B:	with respect to binary operation * with respect to ternary operation ?
Option C:	with respect to binary operation +
	with respect to binary operation + with respect to unary operation -
Option D:	

15.	The statement $(\sim Q < \rightarrow R) \land \sim R$ is true when?
Option A:	Q: True R: False
Option B:	Q:True R:True
Option C:	Q: False R:True
Option D:	Q: False R: False
•	
16.	\neg (p V A) \land (p \land A) is a
Option A:	Tautology
Option B:	Contradiction
Option C:	Contingency
Option D:	Zero
17.	How many binary relations are there on a set S with 5 distinct elements?
Option A:	2^{5}
Option B:	2 ²⁵
Option C:	2 ¹⁰
Option D:	2 ¹⁵
18.	The less-than relation, <, on a set of real numbers is
Option A:	not a partial ordering because it is not asymmetric and irreflexive equals
	antisymmetric
Option B:	a partial ordering since it is asymmetric and reflexive
Option C:	a partial ordering since it is antisymmetric and reflexive
Option D:	not a partial ordering because it is not antisymmetric and reflexive
19.	An algebraic structure is called a semigroup.
Option A:	(Q, +, *)
Option B:	(P, *)
Option C:	$(\mathbf{P}, +)$
Option D:	(+, *)
20	
20.	Condition for monoid is
Option A:	(a+e)=a
Option B:	$(a^*e) = (a+e)$
Option C:	a=(a*(a+e)
Option D:	$(a^*e)=(e^*a)=a$

subjective/descriptive questions

Q2.	Solve any Four out of Six 5 marks each
20 Marks	
А	A survey in 1986 asked households whether they had a VCR, a CD player or cable TV. 40 had a VCR. 60 had a CD player; and 50 had cable TV. 25 owned VCR and CD player. 30 owned a CD player and had cable TV. 35 owned a VCR and had cable TV. 10 households had all three. How many households had at least one of the three?
В	Prove by Mathematical induction that for all positive integers n 1+2+3++n = n(n+1)/2.
С	Let D_{30} be the divisors of 30. Draw the Hasse diagram for $(D_{30},)$, where " " represents the divisibility relation.
D	Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by $n * m = maximum$ of (n, m). Show that (Z, *) is a semi group. Is (Z, *) a monoid ?. Justify your answer.

E	A code have 4 digits in a specific one digit may only be used once?	c order, the digits are between 0-9. How many different permutations are there	if
F	Consider the following two graphs -	A8 A8 A1,	
	G	G.	
	Are two graphs isomorphic?		

Q3. 20 Marks	Solve any Four Questions out of Six 5 marks each	
А	Find g o f and f o g if f: $R \rightarrow R$ and g: $R \rightarrow R$ are given by $f(x) = \cos x$ and $g(x)=3x^2$. Show that g o f \neq f o g.	
В	Let z denote the set of the integers {0,1,2,,n-1}. Let * be a binary operation on z _n denote such that a*b= the reminder of ab divided by n i) Construct the table for the operation O for n=4 ii) Show that(z _n ,*) is a semigroup for any n	
С	Explain the Euler path and circuit and Hamiltonian path and circuit. Do the following graphs have Euler as well as Hamiltonian Path/Circuit? Justify your answer and give the corresponding paths	
D	Let R is a binary relation. Let $S = \{(a,b) (a,c) \in R \text{ and } (c,b) \in R \text{ for some } C\}$ Show that if R is an equivalence relation then S is also an equivalence relation.	
Е	Find the complete solution of the recurrence relation $a_n + 2 a_{n-1} = n+3$ for $n \ge 1$ and with $a_0 = 3$	
F	Use the laws of logic to show that $[(p \rightarrow q)^{\wedge} q] \rightarrow p$ is a tautology	

Examination 2020 under cluster IV (Lead College: PCE)

Examinations Commencing from 15th June 2021 to 26th June2021

Program: Computer

Curriculum Scheme: Rev2016 Examination: TE Semester III

Course Code : CSC302 and Course Name: Digital Logic Design & Analysis

Time: 2 hour

Max. Marks: 80

Question	Correct Option
Number	(Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	С
Q4	В
Q5	D
Q6	D
Q7	В
Q8.	С
Q9.	А
Q10.	D
Q11.	С
Q12.	В
Q13.	С
Q14.	А
Q15.	D
Q16.	D
Q17.	D
Q18.	В
Q19.	А
Q20.	С

QNo2A(i) Step 1 : find out number of parity bits and data bits-----1m

Step 2 : Check the parity bits , While checking the parity, if the total number of 1's are odd then write the value of parity bit P1(or P2 etc.) as 1 (which means the error is there) and if it is even then the value of parity bit is 0 (which means no error).-----2m

Step3: Findout the error bit, For this example its 5th bit.----1m

Step 4: Correct the 5th bit-----1m

(ii). Step 1 : Expand the expression ----1m

Step2: Apply the Boolean rules-----3m

Step 3 : Simplify and write the expression ----1m

QNo2B: Step 1 - Arrange the given min terms in an ascending order and make the groups based on the number of ones present in their binary representations. So, there will be at most 'n+1' groups if there are 'n' Boolean variables in a Boolean function or 'n' bits in the binary equivalent of min terms. -----2m

Step 2 – Compare the min terms present in successive groups. If there is a change in only onebit position, then take the pair of those two min terms. Place this symbol '_' in the differed bit position and keep the remaining bits as it is.----2m

Step 3 – Repeat step2 with newly formed terms till we get all prime implicants.----1m

Step 4 – Formulate the **prime implicant table**. It consists of set of rows and columns. Prime implicants can be placed in row wise and min terms can be placed in column wise. Place '1' in the cells corresponding to the min terms that are covered in each prime implicant.-----2m

Step 5 – Find the essential prime implicants by observing each column. If the min term is covered only by one prime implicant, then it is **essential prime implicant**. Those essential prime implicants will be part of the simplified Boolean function.-----1m

Step 6 – Reduce the prime implicant table by removing the row of each essential prime implicant and the columns corresponding to the min terms that are covered in that essential prime implicant. Repeat step 5 for Reduced prime implicant table. Stop this process when all min terms of given Boolean function are over.----1m

Step 7- Draw the circuit with basic gates---1m

QNo2C(i): Write select lines and data lines-----1m

Write k-map table with input and output-----3m

Draw the circuit diagram-----1m

QNo2C(ii): Find out number of input bits and outputs----1m

Write Truth Table-----2m

Write expression for output----1m

Draw the circuit diagram---1m

Qno 3A:

- 1. Find number of flip flops required for designing a mod 6 counter----1m
- 2. Write the Counter table with present state and next state—4m
- 3. Draw the K map and write the expression-----3m
- 4. Draw the circuit---2m

Qno 3B:

- 1. We construct the characteristic table of D flip-flop and excitation table of S-R flip-flop.—2m
- 2. Using the K-map we find the boolean expression of S and R in terms of D---2m
- 3. construct the circuit diagram of the conversion of S-R flip-flop into D flip-flop.—1m
- 4. We construct the characteristic table of JK flip-flop and excitation table of S-R flip-flop.— 2m
- 5. Using the K-map we find the boolean expression of S and R in terms of JK---2m
- 6. construct the circuit diagram of the conversion of S-R flip-flop into JK flip-flop.—1m

Qno 3B(i):

- 1. Identify the input and output variables-
 - Input variables = A, B, B_{in} (either 0 or 1)
 - Output variables = D, B_{out} where D = Difference and B_{out} = Borrow-----1m
- 2. Draw the truth table- 2m
- 3. Draw K-maps using the above truth table and determine the simplified Boolean expressions-1m
- 4. Draw the logic diagram.---1m

Qno 3B(ii):

Three type of Modeling Style in VHDL -

Data Flow Modeling Style.

Structural Modeling Style.

Behavior Modeling Style.

Data Flow Modeling Style - Data Flow Modeling Style Shows that how the data / signal flows from input to ouput threw the registers / Components.

Behavior Modeling Style : In this modeling style, the behavior of an entity as set of statements is executed sequentially in the specified order. Only statements placed inside a PROCESS, FUNCTION, or PROCEDURE are sequential.

PROCESSES, FUNCTIONS, and PROCEDURES are the only sections of code that are executed sequentially.

However, as a whole, any of these blocks is still concurrent with any other statements placed outside it.

One important aspect of behavior code is that it is not limited to sequential logic. Indeed, with it, we can build sequential circuits as well as combinational circuits.

The behavior statements are IF, WAIT, CASE, and LOOP. VARIABLES are also restricted and they are supposed to be used in sequential code only. VARIABLE can never be global, so its value cannot be passed out directly.

Structural Modeling Style:

In this modeling, an entity is described as a set of interconnected components. A component instantiation statement is a concurrent statement. Therefore, the order of these statements is not important. The structural style of modeling describes only an interconnection of components (viewed as black boxes), without implying any behavior of the components themselves nor of the entity that they collectively represent.

In Structural modeling, architecture body is composed of two parts – the declarative part (before the keyword begin) and the statement part (after the keyword begin).

University of Mumbai Examination 2020 under cluster IV (Lead College: Pillai College of Engg)

Examinations Commencing from 15th June 2021 to 26th June2021

Program: Computer

Curriculum Scheme: Rev2016

Examination: SE Semester III

Course Code: CSC302 and Course Name: Digital Logic Design & Analysis

Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	The octal number (650.122) ₈ is equivalent to	
Option A:	(1A9.2A)16	
Option B:	(1B0.10)16	
Option C:	(1A8.29)16	
Option D:	(1B0.B0)16	
2.	On subtracting (001100) ₂ from (101000) ₂ using 2's complement, we get	
Option A:	1101100	
Option B:	011100	
Option C:	011101	
Option D:	1101011	
3.	The decimal number 15 is represented in its BCD form as	
Option A:	10100000	
Option B:	01010111	
Option C:	00010101	
Option D:	00101011	
4.	According to Boolean law: $A + A = ?$	
Option A:	1	
Option B:	A	
Option C:	0	
Option D:	2A	
5.	Assuming all numbers are in 2's complement representation, which of the following numbers is divisible by 11111011	
Option A:	11100100	
Option B:	11010111	
	11011011	
Option C:	11011011	

Option D:	11110110
6.	Which of the following expression does not equivalent to $\overline{\mathbf{X}}$?
	Which of the following expression does not equivalent to X ?
Option A:	X NAND X
Option B:	X NOR X
Option C:	X NAND 1
Option D:	X NOR 1
7.	A multiplexer with 2-bit data select input is a
Option A:	2: 1 Mux
Option B:	4:1 Mux
Option C:	8:1 Mux
Option D:	16:1 Mux
8.	There are cells in a 5-variable K-map.
Option A:	2
Option B:	16
Option C:	32
Option D:	5
9.	Total number of inputs and Outputs in a full adder are
Option A:	3,2
Option B:	2,3
Option C:	2,2
Option D:	3,1
option 21	
10.	One that is not the outcome of magnitude comparator is
Option A:	A>B
Option B:	A <b< td=""></b<>
Option C:	A=B
Option D:	A+B
11.	Number of essential prime Implicants required for the function $F=\Sigma(2.4.6.7)$ are
Option A:	1
Option B:	2
Option D:	3
Option D:	4
option D.	
12.	TTL 74LS85 is a
Option A:	1-bit magnitude comparator
Option B:	4-bit magnitude comparator

Outing C	
Option C:	8-bit magnitude comparator
Option D:	16- bit magnitude comparator
- 10	
13.	A basic S-R flip-flop can be constructed by cross-coupling of which basic logic
	gates?
Option A:	AND or OR gates
Option B:	XOR or XNOR gates
Option C:	NOR or NAND gates
Option D:	AND or NOR gates
Option D.	
14.	The logic circuits whose outputs at any instant of time depends only on the present
14.	input but not on the past outputs are called
	input but not on the past outputs are caned
Option A:	Combinational circuits
Option B:	Sequential circuits
Option C:	Latches
Option D:	Flip-flops
•	
15.	On a negative edge-triggered S-R flip-flop, the outputs reflect the input condition
	when
Option A:	The clock pulse is LOW
Option B:	The clock pulse is HIGH
Option C:	The clock pulse transitions from LOW to HIGH
Option D:	The clock pulse transitions from HIGH to LOW
16.	Based on how binary information is entered or shifted out, shift registers are
10.	classified into categories.
Option A:	1
Option B:	2
Option C:	3
Option D:	4
17.	Minimum number of Flip Flops required to design a modulo-200 ripple counter
	will be
Option A:	5
Option B:	6
Option C:	7
Option D:	8
10	
18.	If a 10-bit ring counter has an initial state 1101000001, what is the state after the
	second clock pulse?
Option A:	0011010000
Option B:	0111010000
Option C:	110000000
Option C:	000000000
Option D.	

19.	Johnson counters are
Option A:	Synchronous counters
Option B:	Asynchronous counters
Option C:	Decade counters
Option D:	True Decade counters
20.	Which of the following can be the name of an architecture?
Option A:	arch 1
Option B:	1arch
Option C:	arch_1
Option D:	Architecture

Q2	Solve any Two Questions out of Three10 marks each	
	i A seven-bit hamming code is received as 1011011. Assume even parity state whether the received code is correct or wrong, if wrong locate the bit and write correct code.	
A	ii Simplify using Boolean algebra Z= A[B +C (AB +AC)]	
В	Reduce equation using Quine McCluskey method and realize circuit using basic gates. $F(A,B,C,D) = \Sigma m(1,2,3,5,9,12,14,15) + d(4,8,11)$	
C	i Implement the following using only one 8:1 Mux. $F(A,B,C,D) = \Sigma m (0,2,3,6,8,9,13,14)$	
	ii Design 1 bit magnitude comparator.	

Q3	Solve any Two Questions out of Three	10 marks each
А	Design MOD 6 synchronous counter using T Flip F	lop
В	Convert SR flipflop to JK flipflop and D flipflop	
C	i Design a Full Subtractor using only NAND g	ates
C	ii Write short note VHDL modelling styles	

Examination 2020 under cluster ___ (Lead College: _____)

Examinations Commencing from 15^h June to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2016 Examination: SE Semester III

Course Code: CSC 304 and Course Name: Electronic Circuits and Communication Fundamentals Time: 2 hour Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	D
Q3.	D
Q4	А
Q5	D
Q6	А
Q7	D
Q8.	А
Q9.	С
Q10.	D
Q11.	А
Q12.	В
Q13.	D
Q14.	А
Q15.	D
Q16.	В
Q17.	D
Q18.	С
Q19.	А
Q20.	С

Examination 2020 under cluster __(Lead College: _____

Examinations Commencing from 15^h June to 26th June 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2016

Examination: SE Semester III

Course Code: CSC 304 and Course Name: Electronic Circuits and Communication Fundamentals Time: 2 hour Max. Marks: 80

Q1. (40	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
marks)	
, , , , , , , , , , , , , , , , , , ,	
1.	Amplifiers and oscillators using BJT, operate in which of the following region?
Option A:	Inverted mode
Option B:	Active
Option C:	Cut off
Option D:	Saturation
2.	Which operating condition is satisfied by the transistor if it is supposed to function in cut-off region?
Option A:	V _{CE} > 0
Option B:	$V_{CE} = 0$
Option C:	V _{CE} < 0
Option D:	V _{CE} =V _{cc}
3.	In a pnp transistor, which of the following are the current carriers?
Option A:	Acceptor ions
Option B:	Donor ions
Option C:	Free electrons
Option D:	Holes
•	
4.	A transistor is a operated device
Option A:	Current
Option B:	Voltage
Option C:	Both Current and Voltage
Option D:	Power
5.	In a transistor, current relationship is given as
Option A:	$I_C = I_E + I_B$
Option B:	$I_B = I_C + I_E$
Option C:	$I_E = I_C - I_B$
Option D:	$I_E = I_C + I_B$
6.	The most commonly used semiconductor in the manufacture of a transistor is
Option A:	Germanium

)

Option C: Carbon Option D: Nitrogen 7. In an LC oscillator, the frequency of oscillator isL or C. Option A: Proportional to square of Option D: Independent of the values of Option D: Inversely proportional to square root of 8. When a step input is given to an Op-Amp integrator, the output will be, Option A: A ramp Option D: A riangular wave Option D: A triangular wave Option D: A triangular wave Option A: A reating amplifier has R _i of 1 kΩ and R _i of 100 kΩ. The closed-loop voltage gain is Option A: 1.000,00 Option B: 1000 Option A: 1.000,00 Option A: 2.000,00 Option A: 1.000 Option A: 2.000 Option A: 2.000 In How many op-amps are required to implement this equation ? V0=V1 Option A: 2 Option A: 2 Option A: 2 Option B: 3 Option C: 4 Option B: -2V	Option B:	Silicon	
Option D: Nitrogen 7. In an LC oscillator, the frequency of oscillator is L or C. Option A: Proportional to square of Option D: Directly proportional to square root of 8. When a step input is given to an Op-Amp integrator, the output will be, Option D: A ramp Option D: A rectangular wave Option D: A triangular wave with dc bias 9. A certain non-inverting amplifier has R _i of 1 kΩ and R _i of 100 kΩ. The closed-loop voltage gain is Option B: 10000 Option C: 101 Option D: 1000 Option B: 10000 Option C: 101 Option C: 101 Option B: 3 Option C: 101 Option B: 3 Option C: 10 Option B: 2 Option C: 4 Option C: 4 Option D: 1 II. Determine the output voltage when v1=v2=1V V V Option D: 2V Option D: 2V	-		
7.In an L Coscillator, the frequency of oscillator is			
Option A: Proportional to square of Option B: Directly proportional to Option D: Inversely proportional to square root of 8. When a step input is given to an Op-Amp integrator, the output will be, Option A: A ramp Option D: A restangular wave Option D: A restangular wave Option C: A restangular wave with dc bias 9. A certain non-inverting amplifier has R _i of 1 kΩ and R _f of 100 kΩ. The closed-loop voltage gain is Option C: 101 Option D: 1000 Option D: 100 Option C: 101 Option A: 2,00,00 Option D: 100 Option C: 101 Option A: 2 Option A: 2 Option B: 3 Option C: 4 Option C: 4 Option D: 1 11. Determine the output voltage when v1=v2=1V V V Option B: -2V Option B: -2V Option C: 1V Opti	- 1		
Option A: Proportional to square of Option B: Directly proportional to Option D: Inversely proportional to square root of 8. When a step input is given to an Op-Amp integrator, the output will be, Option A: A ramp Option D: A restangular wave Option D: A restangular wave Option C: A restangular wave with dc bias 9. A certain non-inverting amplifier has R _i of 1 kΩ and R _f of 100 kΩ. The closed-loop voltage gain is Option C: 101 Option D: 1000 Option D: 100 Option C: 101 Option A: 2,00,00 Option D: 100 Option C: 101 Option A: 2 Option A: 2 Option B: 3 Option C: 4 Option C: 4 Option D: 1 11. Determine the output voltage when v1=v2=1V V V Option B: -2V Option B: -2V Option C: 1V Opti	7.	In an LC oscillator, the frequency of oscillator is L or C.	
Option C:Independent of the values ofOption D:Inversely proportional to square root of8.When a step input is given to an Op-Amp integrator, the output will be,Option A:A rampOption B:A sinusoidal waveOption D:A triangular waveOption D:A triangular wave with dc bias9.A certain non-inverting amplifier has R_1 of 1 k Ω and R_7 of 100 k Ω . The closed-loop voltage gain isOption A:1,000,00Option D:100Option D:100Option B:3Option B:3Option B:3Option D:10InHow many op-amps are required to implement this equation ? V0=V1Option B:3Option D:110.Determine the output voltage when v1=v2=1V $v = v = v = v = v = v = v = v = v = v =$	Option A:		
Option C:Independent of the values ofOption D:Inversely proportional to square root of8.When a step input is given to an Op-Amp integrator, the output will be,Option A:A rampOption B:A sinusoidal waveOption D:A triangular waveOption D:A triangular wave with dc bias9.A certain non-inverting amplifier has R_1 of 1 k Ω and R_7 of 100 k Ω . The closed-loop voltage gain isOption A:1,000,00Option D:100Option D:100Option B:3Option B:3Option B:3Option D:10InHow many op-amps are required to implement this equation ? V0=V1Option B:3Option D:110.Determine the output voltage when v1=v2=1V $v = v = v = v = v = v = v = v = v = v =$	Option B:	Directly proportional to	
Option D:Inversely proportional to square root of8.When a step input is given to an Op-Amp integrator, the output will be,Option A:A rampOption B:A sinusoidal waveOption D:A rectangular wave with dc bias9.A certain non-inverting amplifier has R, of 1 kΩ and Rr of 100 kΩ. The closed- loop voltage gain isOption A:1.000.00Option D:100Option D:100Option D:100Option A:2.Option B:1000Option C:100Option D:100Option B:3Option B:3Option C:4Option D:111.Determine the output voltage when v1=v2=1V $v_{abb} = v_{abb} = v_{abb} = v_{abb}$ Option B:-2VOption B:-2VOption D:112.The common mode gain of an Op-AMP isOption A:Very high Option D:Option B:3.Option D:10.13.What is the line connecting the positive and negative peaks of the carrier waveform called?			
8. When a step input is given to an Op-Amp integrator, the output will be, Option A: A ramp Option D: A sinusoidal wave Option D: A rectangular wave with dc bias 9. A certain non-inverting amplifier has R _i of 1 kΩ and R _f of 100 kΩ. The closed-loop voltage gain is Option A: 1.000.00 Option B: 1000 Option A: 1.000.00 Option A: 1.000 Option C: 101 Option A: 2 Option A: 2 Option B: 3 Option B: 3 Option C: 4 Option A: 2 Option B: 3 Option D: 1 11. Determine the output voltage when v1=v2=1V $\sqrt[4]{4000}$ $\sqrt[4]{400}$ $\sqrt[$			
Option A:A rampOption B:A sinusoidal waveOption D:A rectangular wave with dc bias9.A certain non-inverting amplifier has R_i of 1 kΩ and R_f of 100 kΩ. The closed-loop voltage gain isOption A:1,000,00Option B:1000Option D:101Option D:101Option C:101Option A:2Option A:2Option A:2Option C:4Option C:4Option C:4Option C:4Option C:4Option D:1I1.Determine the output voltage when v1=v2=1V $v_{abc} = v_{abc} = v_{abc$	-		
Option B:A sinusoidal waveOption C:A rectangular wave with dc bias9.A certain non-inverting amplifier has R_i of 1 k Ω and R_f of 100 k Ω . The closed-loop voltage gain is0 option A:1.000,00Option D:1000 option D:10010.How many op-amps are required to implement this equation ? V0=V10 option A:20 option B:30 option D:111.Determine the output voltage when v1=v2=1V v_{100} the second seco	8.	When a step input is given to an Op-Amp integrator, the output will be,	
Option C:A rectangular waveOption D:A triangular wave with dc bias9.A certain non-inverting amplifier has R_i of 1 k Ω and R_f of 100 k Ω . The closed-loop voltage gain isOption A:1,000,00Option B:1000Option D:101Option D:100I0.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option D:10I1.Determine the output voltage when v1=v2=1V $v = v^{100 k \Omega}$ $v^{100 k \Omega}$ $v = v^{100 k \Omega}$ <td>Option A:</td> <td>A ramp</td>	Option A:	A ramp	
Option D:A triangular wave with dc bias9.A certain non-inverting amplifier has R_i of 1 kΩ and R_f of 100 kΩ. The closed-loop voltage gain isOption A:1,000,00Option B:1000Option D:101Option D:10010.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option D:111.Determine the output voltage when v1=v2=1V $\sqrt{2000 kG}$ <	Option B:	A sinusoidal wave	
9. A certain non-inverting amplifier has R_i of 1 k Ω and R_f of 100 k Ω . The closed- loop voltage gain is Option A: 1,000.00 Option D: 100 0ption D: 100 10. How many op-amps are required to implement this equation ? V0=V1 Option A: 2 Option A: 2 Option B: 3 Option D: 1 11. Determine the output voltage when v1=v2=1V $v_{v_{o}}^{100 k\Omega}$ $v_{v_{o}}^{100 k\Omega}$	Option C:	A rectangular wave	
loop voltage gain isOption A:1.000,00Option B:1000Option C:101Option D:10010.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option D:111.Determine the output voltage when v1=v2=1V11.Determine the output voltage when v1=v2=1V v_{\pm} $v_{$	Option D:	A triangular wave with dc bias	
loop voltage gain isOption A:1.000,00Option B:1000Option C:101Option D:10010.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option D:111.Determine the output voltage when v1=v2=1V11.Determine the output voltage when v1=v2=1V v_{\pm} $v_{$			
Option A:1,000,00Option B:1000Option C:101Option D:10010.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option D:111.Determine the output voltage when $v1=v2=1V$ v_{20} km v_{20} kmOption A:0VOption B:211.Determine the output voltage when $v1=v2=1V$ v_{20} km v_{20} kmOption A:0VOption B:-2VOption D:1VOption D:2VI2.The common mode gain of an Op-AMP isOption B:Very highOption D:UnpredictableI3.What is the line connecting the positive and negative peaks of the carrier waveform called?	9.		
Option B:1000Option C:101Option D:10010.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option C:4Option D:111.Determine the output voltage when v1=v2=1V $v_{20 \text{ km}}$		loop voltage gain is	
Option C:101Option D:10010.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option D:111.Determine the output voltage when v1=v2=1V $v_{20 \text{ kes}}$ Option A:0VOption B:-2VOption D:1VOption D:2VI1.Very highOption B:-2VOption D:2VI2.The common mode gain of an Op-AMP isOption A:Very highOption B:Very lowOption D:UnityOption D:UnityI3.What is the line connecting the positive and negative peaks of the carrier waveform called?			
Option D:10010.How many op-amps are required to implement this equation ? V0=V1Option A:2Option B:3Option D:111.Determine the output voltage when v1=v2=1V $v = v = v = v = v$ $v = v = v = v = v = v$ Option A:0VOption B:-2VOption D:1VOption D:2V12.The common mode gain of an Op-AMP isOption A:Very highOption B:Very lowOption C:UnityOption C:UnityOption D:100 km12.Wat is the line connecting the positive and negative peaks of the carrier waveform called?	Option B:	1000	
10.How many op-amps are required to implement this equation ? $V0=V1$ Option A:2Option B:3Option D:111.Determine the output voltage when $v1=v2=1V$ $v_{v} = v_{v} = v_{v}$ $v_{v} = v_{v} = v_{v} = v_{v}$ $v_{v} = v_{v} = v_{v} = v_{v}$ $v_{v} = v_{v} = v_$	Option C:	101	
Option A:2Option B:3Option C:4Option D:111.Determine the output voltage when v1=v2=1V $v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v$	Option D:	100	
Option A:2Option B:3Option C:4Option D:111.Determine the output voltage when v1=v2=1V $v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v$			
Option B:3Option C:4Option D:111.Determine the output voltage when v1=v2=1V v_{100} ks <td></td> <td></td>			
Option C: 4 Option D: 1 11. Determine the output voltage when v1=v2=1V v 100 ko v 20 ko v 20 ko v 20 ko v 20 ko vo 20 ko Option A: 0V Option B: -2V Option D: 2V 12. The common mode gain of an Op-AMP is Option A: Very high Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?			
Option D: 1 11. Determine the output voltage when v1=v2=1V v 100 km v 20 km v 20 km Option A: 0V Option B: -2V Option D: 2V 12. The common mode gain of an Op-AMP is Option B: Very high Option D: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	-		
11. Determine the output voltage when v1=v2=1V 11. 100 ko 100 ko 100 ko 11. 0V 0ption A: 0V 0ption D: 2V 12. The common mode gain of an Op-AMP is 0ption A: Very high 0ption B: Very low 0ption C: Unity 0ption D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?			
Option A: 0V Option B: -2V Option D: 2V Option D: 2V 12. The common mode gain of an Op-AMP is Option B: Very high Option B: Very high Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	Option D:	1	
Option A: 0V Option B: -2V Option D: 2V Option D: 2V 12. The common mode gain of an Op-AMP is Option B: Very high Option B: Very high Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?			
Option A: 0V Option B: -2V Option C: 1V Option D: 2V 12. The common mode gain of an Op-AMP is Option B: Very high Option C: Unity Option D: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	11.	C 1 10 10 10 10	
Option A: 0V Option B: -2V Option C: 1V Option D: 2V		100 KI	
Option A: 0V Option B: -2V Option C: 1V Option D: 2V 12. The common mode gain of an Op-AMP is Option A: Very high Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?		V1 100 km	
Option A: 0V Option B: -2V Option C: 1V Option D: 2V 12. The common mode gain of an Op-AMP is Option A: Very high Option B: Very high Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?		V2 20 km + Vo	
Option B: -2V Option C: 1V Option D: 2V 12. The common mode gain of an Op-AMP is Option A: Very high Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?		20 KG	
Option B: -2V Option C: 1V Option D: 2V 12. The common mode gain of an Op-AMP is Option A: Very high Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?		<u>_</u>	
Option C:1VOption D:2V12.The common mode gain of an Op-AMP isOption A:Very highOption B:Very lowOption C:UnityOption D:Unpredictable13.What is the line connecting the positive and negative peaks of the carrier waveform called?	Option A:	0V	
Option D:2V12.The common mode gain of an Op-AMP isOption A:Very highOption B:Very lowOption C:UnityOption D:Unpredictable13.What is the line connecting the positive and negative peaks of the carrier waveform called?	Option B:	-2V	
12. The common mode gain of an Op-AMP is Option A: Very high Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	Option C:	1V	
Option A: Very high Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	Option D:	2V	
Option A: Very high Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?			
Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	12.	The common mode gain of an Op-AMP is	
Option B: Very low Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	Option A:	Very high	
Option C: Unity Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	-		
Option D: Unpredictable 13. What is the line connecting the positive and negative peaks of the carrier waveform called?	-		
13. What is the line connecting the positive and negative peaks of the carrier waveform called?	-		
waveform called?	•		
waveform called?	13.	What is the line connecting the positive and negative peaks of the carrier	
Option A: Peak line			
	Option A:	Peak line	

Option B:	Maximum amplitude ceiling
Option C:	Modulation index
Option D:	Envelope
14.	Mathematically, the number of sidebands in frequency modulated system is
Option A:	Infinite
Option B:	One
Option C:	Тwo
Option D:	Zero
15.	In superheterodyne receiver, the input at mixer stage is
Option A:	IF and RF
Option B:	RF and AF
Option C:	IF and AF
Option D:	RF and local oscillator signal
16.	The IF is 455Khz. If the radio receiver is tuned to 855Khz, the local oscillator
	frequency is
Option A:	455Khz
Option B:	1310Khz
Option C:	1500Khz
Option D:	1520Khz
17.	Which of the following is the process of 'aliasing'?
Option A:	Peaks overlapping
Option B:	Phase overlapping
Option C:	Amplitude overlapping
Option D:	Spectral overlapping
opuon 21	Spooran Crompping
18.	Calculate the minimum sampling rate to avoid aliasing when a continuous time
101	signal is given by $x(t) = 5 \cos 400\pi t$
Option A:	100
Option B:	200
Option C:	400
Option D:	250
option D.	
19.	When two or more signals share a common channel, it is called
Option A:	Multiplexing
Option A.	Thereform 5
Option B:	Channeling
Option C:	Switching
Option D:	Sub-channeling
20.	Entropy of a random variable is
Option A:	0
Option B:	1
Option C:	Infinite
Option D:	Can not be determined
	· J

Q2.	Solve any Two Questions out of Three, 10 marks each

(20 Marks)	
А	Discuss the principle of operation of super heterodyne receiver in detail along with waveforms at each stage.
В	Draw and explain opamp inverting comparator. Draw input and output waveforms for Vref >0 and also for Vref <0.
C What are different regions of characteristics of Bipolar Junction Transistor Explain in detail.	

Q3 (20 Marks)	
A	Solve any Two 5 marks each
i.	How DSBSC is produced with the help of balanced modulator?
ii.	What is sampling theorem? What happens if sampling is done at $fs < 2$
	fmax?
iii.	Compare various pulse modulation techniques.
В	Solve any One 10 marks each
i.	Give each component of Analog Communication System in detail.
ii.	Draw an op-amp integrating circuit together with the circuit waveforms.
	Explain the circuit operation.

University of Mumbai Examination 2021 under cluster __ (Lead College: _____) Examinations Commencing from 15th June 2021 to 26th June 2021 Program: BE (Computer Engineering) Curriculum Scheme: Rev 2016 (CBCGS) Examination: SE Semester III Course Code: CSC301 and Course Name: APPLIED MATHEMATICS - III Time: 2 hours Max. Marks: 80

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	А
Q4	С
Q5	А
Q6	D
Q7	В
Q8.	С
Q9.	В
Q10.	С
Q11.	С
Q12.	В
Q13.	D
Q14.	С
Q15.	В
Q16.	В
Q17.	А
Q18.	D
Q19.	С
Q20.	В

Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: BE (Computer Engineering)

Curriculum Scheme: Rev 2016 (CBCGS)

Examination: SE Semester III

Course Code: CSC301 and Course Name: APPLIED MATHEMATICS - III

Time: 2 hours

Q1.	Choose to compulso					g questi	ions. All	the Qu	estions are
1.	Find the value of b_n in the half range cosine series expansion of $f(x) = e^x$, 0 <								
1.	x < 1		o_n in th					(x)	_ C , O <
Option A:					$b_n = e^2$	- 1			
Option B:						- 1			
Option C:					$b_n =$	0			
Option D:					$b_n = e$	+ 1			
2.	Find the fi	ixed po	oints of $\frac{2}{3}$	$\frac{Z+6}{2+7}$					
Option A:	6,1		2	<i>(</i> Τ <i>)</i>					
Option B:	-6,1								
Option C:	6,-1								
Option D:	-6,-1								
3.	Find inver	se Lap	lace Tra	nsform of	$f \frac{1}{s(s^2+4)}$				
Option A:	Find inverse Laplace Transform of $\frac{1}{s(s^2+4)}$ $\frac{1}{4}(1-\cos 2t)$								
Option B:	$\frac{1}{2}(1-\cos t)$								
Option C:	$\frac{1}{4}(1-\cos t)$								
Option D:	$\frac{\frac{1}{2}(1-\cos t)}{\frac{1}{4}(1-\cos t)}$ $\frac{\frac{1}{4}(1+\cos 2t)}{\frac{1}{4}(1+\cos 2t)}$								
4.	Calculate the Rank correlation coefficient from the following data of the ranks of the students in Maths and Physics								
	Rank	1	2	3	4	5	6	7	8
	in								
	Maths	-		1			0		
	Rank	2	4	1	5	3	8	7	6
	in Physics								
Option A:	0.79								
Option B:	0.86								
Option D:	0.74								
Option D:	0.67								
1									

_						
5.	Find the Inverse Laplace transform of $\frac{3(s^2-1)^2}{2s^5}$ $\frac{3}{2} - \frac{3}{2}t^2 + \frac{1}{16}t^4$ $\frac{3}{2} - \frac{3}{2}t^2 - \frac{1}{16}t^4$ $-\frac{3}{2} + \frac{3}{2}t^3 + \frac{1}{16}t^4$ $\frac{3}{2} - \frac{3}{2}t^3 + \frac{1}{16}t^4$					
Option A:	$\frac{2s^3}{3 3 1}$					
Option A.	$\frac{3}{2} - \frac{3}{2}t^2 + \frac{1}{16}t^4$					
Option B:						
- I	$\frac{1}{2} - \frac{1}{2}t^2 - \frac{1}{16}t^4$					
Option C:	3 3 3 1 4					
	$-\frac{1}{2}+\frac{1}{2}t^{2}+\frac{1}{16}t^{2}$					
Option D:	$\frac{3}{3} - \frac{3}{5}t^3 + \frac{1}{5}t^4$					
	2 2 16					
6						
6.	If two variables oppose each other then the correlation will be					
Option A:	Positive Correlation Zero Correlation					
Option B: Option C:	Perfect Correlation					
Option D:	Negative Correlation					
7.	Σ^{\prime} by L ,					
	Find the Inverse Laplace transform of $\frac{1}{(s+1)(s-2)(s-3)}$					
Option A:	$1_{a^{-t}}$ $4_{a^{2t}}$ $7_{a^{3t}}$					
	$-\frac{-\overline{6}e^{-\overline{3}e^{-\overline{3}}}-\overline{2}e^{-\overline{3}e^{-\overline{3}}}}{2}$					
Option B:	$\frac{1}{2}e^{-t} - \frac{4}{2}e^{2t} + \frac{7}{2}e^{3t}$					
	$\frac{6^{\epsilon}}{3^{\epsilon}} \frac{3^{\epsilon}}{2^{\epsilon}}$					
Option C:	$-\frac{1}{2}e^{t}-\frac{4}{2}e^{-2t}+\frac{7}{2}e^{-3t}$					
Option D:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Option D.	Find the Inverse Laplace transform of $\frac{2s^2 - 4}{(s+1)(s-2)(s-3)}$ $-\frac{1}{6}e^{-t} - \frac{4}{3}e^{2t} - \frac{7}{2}e^{3t}$ $-\frac{1}{6}e^{-t} - \frac{4}{3}e^{2t} + \frac{7}{2}e^{3t}$ $-\frac{1}{6}e^t - \frac{4}{3}e^{-2t} + \frac{7}{2}e^{-3t}$ $-\frac{1}{6}e^{-t} + \frac{4}{3}e^{2t} + \frac{7}{2}e^{3t}$					
	0 5 2					
8.	Evaluate $\int_0^\infty e^{-5t} \delta(t-3) dt$					
Option A:	e^{-s}					
Option B:	1					
Option C:	e ^{-15s}					
Option D:	e ^{15s}					
9.	Z transform of $u(k) = \begin{cases} 1, k \ge 0\\ 0, k < 0 \end{cases}$ is					
	$\frac{2 \text{ transform of } u(k) - (0, k < 0)}{Z}$					
Option A:						
Option B:	$\frac{1-z}{z}$					
	$\overline{z-1}$					
Option C:						
Option D:	$\overline{z+1}$					
Option D.						
10.	In the Fourier series expansion of $f(x) = e^{\alpha x}$, $\alpha \neq 0$ in $(0,2\pi)$ what is the value					
	of b_5					
Option A:	$5(1-e^{-2\pi\alpha})$					
Option B:	$\frac{\pi(\alpha^2 + 25)}{5(1 + e^{2\pi\alpha})}$					
Option C:	$\frac{\pi(\alpha^2 + 25)}{5(1 - e^{2\pi\alpha})}$					
- phone C.	$\frac{3(1-c-7)}{\pi(\alpha^2+25)}$					
	n(u + 23)					

Option D:	$(1-e^{-2\pi\alpha})$				
1	$\frac{1}{5\pi(\alpha^2+25)}$				
	5/1(4 + 25)				
11.	Find $L(t e^{3t} \sin 4t)$				
Option A:	2(s-3)				
1					
Option B:	$ \overline{(s^2 - 6s + 25)^2} \\ 4(s - 3) $				
Option C:	$ \overline{(s^2 - 6s + 25)^2} \\ 8(s - 3) $				
option e.					
Option D:	$\frac{\overline{(s^2 - 6s + 25)^2}}{8(s - 3)}$				
option D.	$\frac{1}{(s^2-6s+25)}$				
12.	In the expansion of $f(x) = x(\pi - x)$ as a series of cosines of multiples of x in 0 <				
12.	in the expansion of $f(x) = x(\pi - x)$ as a series of cosines of multiples of x in $\sigma < x < \pi$ what will be the value of a_0				
Option A:	$a_{2} = 0$				
Option B:	π^2				
option 21	$a_0 = \frac{\pi}{6}$				
Option C:	$(1 + \cos n\pi)$				
1	$a_0 = -2\left(\frac{n^2}{n^2}\right)$				
Option D:	π^2				
-	$a_0 = 0$ $a_0 = \frac{\pi^2}{6}$ $a_0 = -2\left(\frac{1+\cos n\pi}{n^2}\right)$ $a_0 = \frac{\pi^2}{12}$				
13.	The inverse Z- transform of $F(z) = \frac{1}{z+a}$ is				
Option A:	$\frac{1}{\{(-a)^{1-k}\}, z > a, k \ge 1}$				
Option B:	$\frac{\{(-a)^{2-k}\}, Z \geq a, k \geq 1}{\{(a)^{k-1}\}, z \geq a, k \geq 1}$				
Option D:	$\{(a)^{k-1}\}, z > a, k \ge 1$				
Option D:	$\{(-a)^{k+1}\}, z > a, k \ge 1$				
Option D.	$\{(-a)^{k-1}\}, z > a, k \ge 1$				
14.	Coefficients of regression are				
Option A:	Independent of change of origin and change of scale				
Option B:	Independent of change of scale but not of change of origin.				
Option C:	Independent of change of origin but not of change of scale.				
Option D:	Dependent on both change of scale and on the change of origin.				
•					
15.	Inverse Laplace Transform of $\tan^{-1}\frac{1}{s}$ is				
Option A:	1				
	$\frac{1}{2t}\sin t$				
Option B:	1				
	$-\sin 2t$				
Option C:	$\frac{t}{-\frac{1}{t}\sin 2t}$				
	$-\overline{t}$ sin 2t				
Option D:	$t \sin \frac{t}{2}$				
	2				
10					
16.	Find the mapping of the real axis of the z-plane under the transformation $W = \frac{z}{z+i}$				
Option A:	A circle $ w = 1$				
Option B:	A circle centered at (0,-1) and radius 1				
Option C:	A circle centered at (-1,0) and radius 1				
L					

Ontion D:	A circle contered at (1,1) and redius 1
Option D:	A circle centered at (1,1) and radius 1
17.	Find the 7 transform of F^k $k > 0$
Option A:	Find the Z transform of 5^k , $k \ge 0$
Option A.	$\frac{-}{7-5}$
Option B:	
1	$\frac{z}{z-5}$ $\frac{z}{z+5}$ $\frac{z}{5-z}$
Option C:	<u>Z</u>
Outing Di	5-z
Option D:	$\frac{z}{(z-5)^2}$
	$(2-3)^{-}$
18.	$r = t + t \left[c^{t} + \sin t \right]$
10.	Evaluate $L\left[\int_{0}^{t} e^{t} \frac{\sin t}{t} dt\right]$
Option A:	$\frac{1}{s} \cot^{-1}(s+1)$ $\frac{1}{s^{2}} \cot^{-1}(s-1)$ $\frac{1}{s^{2}} \cot^{-1}(s+1)$ $\frac{1}{s} \cot^{-1}(s+1)$ $\frac{1}{s} \cot^{-1}(s-1)$
	$\frac{-\cot(3+1)}{3}$
Option B:	$\frac{1}{-1}$ cot ⁻¹ (s - 1)
	S^2
Option C:	$\frac{1}{2} \cot^{-1}(s+1)$
Ontion Di	$\frac{s^2}{1}$
Option D:	$\frac{1}{2}\cot^{-1}(s-1)$
	S
19.	If $f(z) = u + iv$ is analytic then which of the following is false
Option A:	f(z) satisfies CR equations
Option B:	u and v are harmonic functions
Option C:	$u_{xx} + u_{yy} = 0$ and $v_{xy} + v_{yy} = 0$
Option D:	u and v are harmonic conjugates of each other
20.	Find $\int_0^\infty e^{-t} erf\sqrt{t} dt$
Option A:	$\sqrt{2}$
Option B:	$\frac{\sqrt{2}}{1}$
1 .	$\sqrt{2}$
Option C:	
option C.	$-\frac{1}{\sqrt{2}}$
Option D:	1
option D.	$\frac{1}{2}$

Q2	Solve any Four out of Six	5 marks each
А	Evaluate inverse Laplace Transform of $\log\left(1+\frac{1}{s^2}\right)$.	
В	Find $L(1 + 2t - 3t^2 + 4t^3) H(t - 2)$	
С	Determine the constants a, b, c, d if $f(z) = x^2 + 2axy$ $2dxy + y^2$) is analytic.	$+by^2+i(cx^2+$
D	Find the Z-transform of $\left\{ \left(\frac{1}{3}\right)^{ k } \right\}$	
Е	Obtain the half range cosine series expansion of $f(x) = x$ π .	$(\pi - x), 0 < x <$
F	Calculate Speareman's coefficient of rank correlation from data of students	the following

Height	60	62	64	66	68	70	72	74
(in								
inches.)								
Weight	92	83	101	110	128	119	137	146
(in lbs.								

Q3	Solve any Four out of Six	5 marks each					
А	Obtain the Fourier Series for $f(x) = 1 - x^2$	Obtain the Fourier Series for $f(x) = 1 - x^2$ in (-1, 1).					
В	Find an analytic function whose imaginary pa	Find an analytic function whose imaginary part is $\tan^{-1} \frac{y}{r}$.					
С	Find the Laplace transform of $t \int_0^t e^{-2u} \cos^2 t$	² u du.					
D	Find the inverse z transform of $Z^{-1}\left\{\frac{1}{z-1}\right\}$, $ z $	Find the inverse z transform of $Z^{-1}\left\{\frac{1}{z-1}\right\}$, $ z < 1$.					
	Fit a straight line to the following data, with x as independent variable						
E	x 1965 1966 1967	1968 1969					
	y 125 140 1651	195 200					
F	Using Laplace Transform solve $(D^2 - 3D + 2)y = 4e^{2t}$, with $y(0) = -3$ and $y'(0) = 5$.						