Scheme	R2012
Semester	7
Course Code	CPC701
Course Name	Digital Signal Processing

Question No	Answer Key	
1	4	
2	$\mathbf{x}(\mathbf{n}) = \mathbf{x}(\mathbf{n} + \mathbf{N})$	
3	400 Hz	
4	Both signals are periodic	
5	Folding, Shifting, Multiplication, Summation	
6	even	
7	1	
8	Linear convolution.	
9	superposition and homogeneity	
10	stable	
11	discrete time systems	
12	linear	
13	Finite discrete sequences	
14	30 Joules	
15	{4, -2, 0, -2}	
16	64 and 32	
17	12	
18	Three, four	
19	overlap add and save	
20	DFT	
21	Finite	
22	Carls coefficient	
23	Fourier transform	
24	recursive	
25	accuracy	

I I

R2012
7
CPC701
Digital Signal Processing

Question No	Question	a	b	c	d
1	operations are involved in calculation of linear convolution.	3	4	5	6
2	A discrete-time signal x(n) is said to be periodic if it satisfies the conditionfor	x(n)=-x(N)	x(n) = x(n + N)	x(n) = x(N)	x(n) = x(2 N)
-	all integers n.				
3	Calculate the minimum sampling rate to avoid aliasing when a continuous time signal is given by $x(t) = 5 \cos 400\pi t$	100 Hz	200 Hz	400 Hz	300 Hz
4	Circular convolution can be applied when	One signal is periodic	Both signals are	Both signals are	Unconditionally
4		One signal is periodic	periodic	aperiodic	onconditionally.
5	Identify all elementary operations involved in The Convolution Sum operation	Shifting, Folding,	Shifting, Folding,	Folding, Shifting,	Folding, Shifting,
		Multiplication,	Summation,	Multiplication,	Summation,
		Summation	Multiplication	Summation	Multiplication
6	In a discrete time signal x(n), if x(n)=x(-n) then it is called signal.	Non-deterministic	even	Periodic	Energy
7	The shifted version of the discrete-time unit step sequence $u(n - k)$ is equal to	1	infinity	0	-1
	for n greater than and equal to k and is equal to 0 for $n < k$	-		0	-
8	is the basic operation to calculate the output for any linear time	Circular convolution	Periodic	Linear convolution	Correlation
0	invariant system given its input and its impulse response		convolution		convolution
9	A linear system obeys the principle /principles of	superposition	superposition	homogeneity	superposition and
5		Superposition	and	nomogeneity	ontanglomont
			homogonaitu		entangiennent
10	For a linear Time law adapt (LTI) and an object include an array is since a hfal	-t-bl-	nomogeneity	in and bla	
10	For a linear time invariant (LTI) system whose impulse response is given as $n[n] = v[n] + 1/2 v[n-1] + 1/4 v[n-2]$, the system is	stable	unstable	Invertible	non-recursive
11	X[II] + 1/2 X[II-1] + 1/4 X[II-2], the system is		dia anata tina a	lala attack and a sate as a	
11	incroprocessors, semiconductor memories, snift registers, etc. are	discrete time systems	discrete time	identical systems	discrete time signals
			signais	<i>(</i> (),,	and systems
12	DFT isprocess	linear	non linear	effective	periodic
13	DFT is applied to	Infinite sequences	Continuous	Continuous finite	Finite discrete
			infinite signals	sequences	sequences
14	Find energy of the signal using Parseval's theorem for X(K) = {10, -2+2j, -2, -2-2j}	98 Joules	30 Joules	32 Joules	4 Joules
15	The DFT of x[n] = {0, 1, 2, 1} is	{4, -2, 0, -2}	{4, 2, 0, -2}	{4, 2, 0, 2}	{4, -2, 0, 2}
16	In an N-point sequence, if N=16, the total number of complex additions and	64 and 80	80 and 64	64 and 32	24 and 12
	multiplications using Radix-2 FFT are				
17	How many complex additions are required to be performed in linear filtering of a 4	2	12	6	8
	point sequence using DFT algorithm?				
18	In an 8-point DFT radix-2 FFT, there are stages of computations with	Three, three	Four, four	Three, four	Four, three
	butterflies per stage.				
19	Large amounts of memory is required and computation of DFT becomes	overlap add and save	overlap add	overlap save	convolution
	cumbersome. This is overcome by which method				
20	FFT has faster computations compared to	DFT	IDFT	DFS	FS
21	Memory of FIR system is	Finite	Infinite	Can be finite or	Zero
		- mite		infinite	2010
22	To measure the degree of linear dependence between two variable	Carls coefficient	convolution	correlation	FFT
	is used				
23	Most biomedical signals of practical interest can be decomposed into a sum of	Fourier series	Fourier	Laplace transform	Z transform
-	sinusoidal signal components. For the class of finite energy signals, the		transform		
	decomposition is called the				
24	IIR filters are	recursive	renetitive	nonrecursive	low pass filters
25	DSP processors have high level ofcompared to apalog processors	comparison	accuracy	aliacing	errors
23	Dar processors have high level ofcompared to analog processors	companson	accuracy	anasing	01013

Scheme	R2012
Semester	VII
Course Code	CPC702
Course Name	Cryprography and System Security
Question No.	Answer-Key
1	а
2	С
3	С
4	d
5	С
6	b
7	а
8	d
9	d
10	а
11	b
12	b
13	а
14	а
15	С
16	С
17	b
18	d
19	b
20	С
21	b
22	С
23	а
24	d
25	С

Scheme	R2012					
Semester	VII					
Course Code	CPC702					
Course Name	Cryprography and System Security					
Question No.	Question	а	b	С	d	
1	A property that makes relationship	Confusion	Diffusion	Block Cipher	Stream Cipher	
2	Steganography is the example of	image processing	authentication	covert channel	data channel	
3	Lack of Integrity in a system leads to -	Database hacking	Data deletion	Data tampering	Data leakage	
4	means selecting and continuously	Encipherment	Authentication	Notarization	Routing Control	
5	attacks are in the nature of	Active	Risky	Passive	Controlled	
6	Use Vigenere cipher with key "HACK" to	ZFEEYJVI	ZEEEYIVI	ZBEFYJVJ	ZEEEZIVI	
7	In multiplicative cipher the formula used to	(M*K)mod 26	(M*K-1)mod 26	(M*K)/26	(M*k-1) *26	
8	Use Play fair cipher to encrypt the message	LTUGEGAFRATG	LTUGEGZTRAHF	LTUGEGGFRA	LTUGEGAFRAHF	
9	Find the multiplicative inverse of 4 in Z10	5	6	4	there is no	
10	Input block size of plaintext for DES is	64 bits block,16	128 bits block,16	16 bits block,64	64 bits block,20	
11	In DES algorithm if the input to S-box is	row 2,column 3	row 3, column 1	row 17, column 1	row 8, column 3	
12	In the DES algorithm Round Input is of	48, 32	32,48	56, 24	32, 32	
13	If Φ (n) is 1012 where p & q are greater	p=23,q=47	p=22,q=46	p=24,q=48	p=44,q=23	
14	Diffie Hellman is a	Key exchange	Digital Signing	Symmetric key	Hash	
15	Digital Signature is	encryption with	encryption with	encryption with	encryption with	
16	method of authentication,	digital signature	Kerberos	challenge	encryption	
17	Which protocol uses Ticket Granting Ticket	Buffer overflow	Kerberos	MD5	RSA	
18	provides confidentiality and	SSL	MD5	Firewall	PGP	
19	The Mesh based model is used for	When the roots of	When the roots of	When there is no	When there are	
	In cryptography, is a standard	X.501	X.511	X.509	X.500	
	defining the format of public key					
20	certificates.					
	Program activated on an infected machine	Key logger	Zombie	Spammer	Trapdoor	
	that is activated to launch attacks on other					
21	machines					
	A attack happens when a computing	Incomplete	Buffer overflow	race condition	salami attack	
	system that's designed to handle tasks in a	mediation				
	specific sequence is forced to perform two					
	or more operations simultaneously					
22						
	Buffer overflow attack is possible on	C and C++	Java	Python	Php	
23	program					
	To hijack a session attack	IP hacking	IP spooling	IP tracking	IP spoofing	
24	can be performed					
	Multiple computers & their infrastructure	GoS attack	PoS attack	DDoS attack	DoS attack	
25	is used in this attack					

Scheme	R2012
Semester	VII
Course Code	CPC703
Course Name	Artificial Intelligence

Question No.	Answer-Key
1	а
2	b
3	а
4	d
5	а
6	а
7	а
8	С
9	а
10	а
11	а
12	d
13	b
14	С
15	b
16	а
17	a
18	а
19	а
20	b
21	b
22	a
23	b
24	a
25	а

Scheme	R2012
Semester	VII
Course Code	CPC703
Course	
Name	Artificial Intelligence

Question No.	Question	а	b	C	d
		Making a Machine	Programming with your		Putting your intelligence
1	What is Artificial intelligence?	intelligent	own intelligence	Playing a Game	into Computer
2	Who is the father of Artificial Intelligence?	Doug Cutting	John McCarthy	William S.	Rasmus Lerdorf
	Which of the Following Agents have a Condition-Action		Model based, goal based	Model based, utility	
3	Rules	Simple Reflex Agent	Agent	based Agent	Leaning Agent
	Which of the following is not a component of General				
4	Learning Agent ?	Critic	Learning element	Problem Generator	Environment
5	Iterative Depth First Search is derived from	DFS	BFS	Quicksort	Depth limited search
	8 queens can be formulated in incremental and complete				
6	state	yes	no	sometimes	not sure
7	Which search strategy is also called as blind search?	Uninformed search	Informed search	Adversarial search	Local search
8	What algorithm has space complexity O(bd)?	Depth First Search	Bredth First Search	Iterative deeping DFS	None of the above
				BFS, Depth Limited	
9	The space complexcity of is better than	DFS , BFS	BFS,DFS	Search	BFS , IDS
	Figure 1-1 in link shows an 8-puzzle problem with the start				
	state and the goal state. The heuristic function (N) counts				
	the number of tiles (from 1 to 8) that are out of place, now				
	the heuristic value of the start state is:				
	https://drive.google.com/file/d/1rBofVtE08-ezDSyoB-				
10	Tsb2ITX1Gr3L0y/view?usp=sharing	5	7	4	2
	Which form is called as a conjunction of disjunction of				
11	literals?	Conjunctive normal form	Disjunctive normal form	Normal form	First normal form

	A rule of inference is sound if it is based on a tautological				
	Implication. Which of the following is NOT a sound rule of				
12	inference	$P \land (P \rightarrow Q) \rightarrow Q$	$(P \land Q) \rightarrow P$	$P \to (P \lor Q)$	$Q \land (P \rightarrow Q) \rightarrow P$
	In CNF, existentially quantified variables are replaced by a				
13	·	Recursive function	Skolem function	Objective function	a constant value
	What type clauses are available in Conjunctive Normal				
14	Form?	Disjunction of variables	Conjunction of literals	Disjunction of literals	Conjunction of variables
		When ((a1 or a2 or	When ((a1 and a2 and	When ((a1 and a2 and	When ((not a1) and (not
) →c) is a) →c) is a) →c) is a NOT	a2) or or c) is a
15	When an inference rule (a1, a2, $ \rightarrow c$) is sound?	tautology.	tautology.	tautology.	tautology.
		for every value of x, P(x)	for at least one value of	for some value of x, P(x)	for none of the value of
16	For a Universal Quantifier in FOPL, $\forall x P(x)$ is read as?	is true	x, P(x) is true	is true	x, P(x) is true
17	PROLOG is	language	syntax	semantic	None of the mentioned
18	Expert system haveengine	inference	knowledge	goal function	profit
19	Automated vehicle is an example of	Supervised learning	Unsupervised learning	Active learning	Reinforcement learning
20	but specifies an ordering between actions only where	Linear Order	Partial order	Total order	Unordered
21	with many parameters.	Linear Functions	Nonlinear Functions	Discrete Functions	Exponential Functions
22	search?	search	Hill-climbing search	Depth-first search	Breadth-first search
23	First phase in NLP is		lexical Analysis	Syntax Analysis	Discourse integration
24	Which of the below is NOT NLP use case?	Fingerprint Biometric	Text Summarization	Question Answering	Voice recognition
25	is regarded as brain of an Expert System.	Inference Engine	User Interface	Knowledge Base	End User

Course codeCPE7021CourseAdvanced AlgorithmsSchemeR2012

Q. No.	Question No.	Answer-Key		
1	1	A(n) = O(W(n))		
2	2	Theta (n^2)		
3	3	n^3 / (sqrt(n))		
4	4	Red		
		Rotate z.grandparent in opposite direction of z & recolor		
5	5	parent and grandaparent.		
		Recolor Parent and Sibling and double black becomes		
6	6	single black node.		
		Double Black Node has Black Parent, Black Sibling with		
7	7	black children		
8	8	10X20X40		
9	9	O(n^2)		
10	10	Prim's Algorithm		
11	11	Bellman Ford Algorithm		
12	12	O(ElogV)		
13	13	Relax		
14	14	Johnson's Algorithm		
15	15	Minimum Cut		
16	16	Skew symmetry		
17	17	Never		
18	18	Relabel		
19	19	Non-negativity Constraint		
20	20	no contribution in objective function		
21	21	Net Profit		
22	22	Divide and Conquer		
23	23	Quick hull problem		
24	24	O(N log N) & O(N^2)		
25	25	Euclidean distance		

Course code Course Scheme CPE7021 Advanced Algorithms R2012

Q. No.	Module No.	Question	Option1 (a)	Option2 (b)	Option3 (c)	Option4 (d)
		Assume that w(n) and A(n) denote the worst case and average case	A ()	A (-)		
		running time of an algorithm respectively, executed on an input of	A(n) =	A(n) =	A(a) (0)(1)(a))	
1	1	size n. which of the following is always true?	Omega(w(n))	Theta(w(n))	A(n) = O(W(n))	A(n) = O(VV(n))
		int fun(int n)				
		{				
		int count = 0;				
		for (int i = 0; i < n; i++)				
		for (int j = i; j > 0; j)				
		count = count + 1;				
		return count;				Theta
2	1	}	Theta (n)	Theta (n^2)	Theta (n*Logn)	(nLognLogn)
			(15^10) * n +			
3	1	Which of the following is not O(n^2)?	12099	n^1.98	n^3 / (sqrt(n))	(2^20) * n
		When a node is first inserted in a red-black				
		tree, it is placed according to the insert procedure				
		in a binary search tree. What color is this newly			Either Red or	
4	2	inserted node (initially) ?	Red	Black	Black	It has no color
			Rotate	Recolor	Rotate	Rotate
		If u have a tree with 20(Root Node, black), 15(left child of 20,red)	z.grandparent	parent,	z.parent in	z.grandparent
		and 5(left child of 15, red) which rule will you apply to balance the	in opposite	grandparent	opposite	in same
5	2	RBT?	direction of z	and uncle	direction of z	direction of z
				Recolor Parent		
				and Sibling		
				and double		
				black becomes	Rotate parent	
			Recolor Parent	single black	in opposite	Left rotation
6	2	Solution to a case where double black node has red parent is ?	and Sibling	node.	direction	on sibling
					Double Black	
					Node has	
					Black Parent,	
				Double Black	Black Sibling	Double Black
		Identify the scenario when double black property is pushed up &	Root Node is	Node has Red	with black	Node has Red
7	2	sibling becomes red ?	Double Black	Parent	children	Sibling
		Let there be two matrices P and Q which are 10 x 20 and 20 x 40				
_		matrices respectively. What is the number of multiplications				
8	3	required to multiply the two matrices?	10X20	20X40	10X20X40X20	10X20X40
	2	Specify the time complexity of the following dynamic programming	0(4)	0(1)	0(- 42)	0(1)
9	3	Implementation of the rod cutting problem?	U(1)	U(n)	U(n^2)	U(logn)
			Prim's	Kruskal's	Elovd Warshall	Ford Fulkorson
10	4	Dijkstra's Algorithm is very similar to which algorithm 2	Algorithm	Algorithm	Algorithm	Algorithm

		Single source shortest path problem on a graph having negative	Prim's	Dijkstra's	Bellman Ford	Floyd Warshall
11	4	weights can be solved using which algorithm?	Algorithm	Algorithm	Algorithm	Algorithm
		Specify the time complexity of Dijkstra's algorithm using binary				
12	4	min-heap method?	O(V)	O(VlogV)	O(E)	O(ElogV)
		Procedure used to update the costs of all the vertices V, connected				Overlapping
13	4	to a vertex U to get the shortest path?	Relax	Intialization	Costing	Subproblems
		Identify the algorithm in which Bellman Ford Algorithm is called	Prim's	Kruskal's	Floyd Warshall	Johnson's
4	4	once and Dijkstra called V times.	Algorithm	Algorithm	Algorithm	Algorithm
				Residual		Original
15	5	Bottle neck capacity in a flow network is also called as?	Minimum Cu	Capacity	Maximum Cut	Capacity
		In a flow network, The net flow from u to v must be the opposite				
		of the net flow from v to u i.e. $f(u,v)=-f(v,u)$. What is the property	Residual	Skew	Flow	Capacity
16	5	called?	Capacity	symmetry	Conservation	Constraint
					Depends on	Only if
		Does the flow conservation property stand true for source and sink			Capacity	Minimum cut
17	5	node ?	Always	Never	constraint	is 4
		Flow network operation in which you increase height of the vertex		Augmented		
.8	5	when none of its adjacent is at lower height is called?	Push	Path	Relabel	Residual Flow
		Which constraint should be extisting by the fassible basis solution	Non norativi	Nogativo	Pacie	Common
0	C	in the simpley method 2	Non-negativi	y Negative	DdSIL	common
.9	0	In the simplex method ?	bigh	divisor	base	constraint
			contribution	n contribution in	contribution in	contribution in
		What is the reason behind assigning zero coefficients to slack	objective	objective	objective	objective
20	6	variables in the simpley method ?	function	function	function	function
.0	0	What is "Ci - Zi" row in a Simplex table for maximization represents	Tunction	Tunction	Tunction	lunction
21	6	?	Profit per uni	Gross Profit	Net Profit	Constraints
	-	Which is the optimal approach to solve closest pair of points	Divide and	Dvnamic	Greedy	
22	7	problem?	Conquer	Programming	Strategy	Backtracking
		Select the appropriate method from the given options where you	Closest pair	Quick hull		path
23	7	construct a smallest polygon out of n given points?	problem	problem	union-by-rank	compression
		Specify the average case and worst case time complexity of convex	O(N log N) &	O(log N) &	O(N) &	
24	7	hull algorithm ?	O(N^2)	O(N^2)	O(N^2)	O(1) & O(N^2)
		Select the basic operation used in closest pair algorithm using	Manhattan	Euclidean	Heuristic	Chebyshev
-		huuta fayaa annyaash2	alt and a second	diates a sec	diatamaa	diatanaa

Scheme	R2012
Semester	VII
Course Code	CPE7023
Course Name	Image Processing
Question No.	Answer-Key
1	(X+1, y), (X-1, y), (X, y+1), (X, y-1), (X+1, v+1), (x+1, v-1), (x-1, v+1), (x-1, v-1)
2	A circle centered at P
- 3	3072
3	If g is in N4(p) OR g is in ND(p) and the
	set N4 (p) ∩ N4 (q) has no pixels whose
4	values are from V
5	No Change on histogram
6	15
7	pixel positions
8	convolution
9	Horizontal line detection
10	second order derivative filter
11	high pass filters
12	nonlinear operation
13	horizontal lines
14	It detects multiple pixel thick edge
15	8x8
16	Multiplication of DFTs of two sequences
17	-2-2j
18	Finite discrete sequences
19	Wavelet
20	Arithmetic redundancy
21	Quantizer
22	Quantization of DCT components
23	subimage
24	dilation followed by erosion
25	Thining

Scheme	R2012				
Somester	MI				
Ocinicator Comuna Conta					
Course Code	CPE7023				
Course Name	Image Processing				
Question No.	Question	Option-1	Option-2	Option-3	Option-4
1	What is the set of pixels of 8- neighbors of pixel p at coordinates (x, y)?	(x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+2, y), (x-2, y), (x, y+2), (x, y-2)	(x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)	(x+1, y+1), (x+1, y-1), (x- 1, y+1), (x-1, y-1), (x+2, y+2), (x+2, y-2), (x-2, y+2), (x-2, y-2)	(x+2, y), (x-2, y), (x, y+2), (x, y-2), (x+2, y+2), (x+2, y-2), (x-2, y+2), (x- 2, y-2)
	All the pixels at Euclidean distance of r from given pixel		A square centered at		A rectangle centered at
2	P form	A circle centered at P	Р	A triangle centered at P	P
	In digital image of M rows and N columns and L discrete gray levels, calculate the bits required to store a digitized				
3	image for M=N=32 and L=8.	16384	4096	8192	3072
	Two pixels p and q having gray values from V, the set of gray-level values used to define adjacency, are m-	If q is in N4(p) OR q is in ND(p) and the set N4 (p) \cap N4 (q) has no pixels whose values are	If q is in N8 (p) OR q is in ND (p) and the set N8 (p) \cap N8 (q) has no pixels whose values	If q is in N4 (p) OR q is in ND (p) and the set N4(p) \cap N4 (q) has pixels whose values are	If q is in N8 (p) OR q is in ND (p) and the set N8 (p) \cap N8 (q) has pixels
4	adjacent if:	from V	are from V	from V	whose values are from V
5	What is the effect of equalizing an already equalized histogram?	Number grey levels reduced	No Change on histogram	Number grey levels increased	New grey levels gets added
6	Result of application of thresholding operation with T=3 at a pixel p with gray value 5 of an 4 bpp is	15	7	255	0
7	Histogram does not depend	nixal positions	brightnoss		typo of imago
/	Spatial Filtering is a		blightness		type of image
8	process	correlation	convolution	amplification	subtraction
9	mask -1 -1 -1 2 2 2 -1 -1 -1	Horizontal line detection	45 degree line detection	(-45) degree line detectio	Vertical line detection
10		First order derivative	three order derivative	second order derivative	Four order derivative
10	Chomoning Filters are		high page filters	median filtere	incer
11	Sharpening Filters are		nigh pass niters	median milers	Isotropic
12	Median filtering is a	nonlinear operation	addition	mean	maximum
	The norizontal line detection				
10	mask gives very strong	horizontal lines	vortical lines	lines at 45 degrees	lines at -45 degrees
15	Which one of the following is	nonzontai lines		ines at 40 degrees	intes at -45 degrees
	limitation of Gradient edge		It detects single pixel	It detects multiple pixel	It doesn't work well with
14	detector?	It detects double edges	thick edge	thick edge	sharp edges
	Before applying DCT an				
	image is normally divided in to				
15	DIOCKS OF SIZE:	4x4	8x8	16x16	256x256
	I rie circular convolution of two	Summation of DETs of	Difference of DETe of	Square of multiplication	Multiplication of DETa
16	equivalent to	two sequences	two sequences	sequences	of two sequences
	If $X(K) = \{10, -2+2j, -2, \\}$ is 4 point DET of $x(n)$ then the				
17	fourth component is	-2+2j	-2-2j	-2	2
	· · · · · · · · · · · · · · · · · · ·	-	Finite discrete	Continuous infinite	Continuous finite
18	DFT is applied to	Infinite sequences	sequences	signals	sequences
	Which image transform has high energy compaction				-
19	property:	Hadamard	Fourier	Wavelet	Cosine
20	Which one of the following is not a type of redundancy in image representation?	Psychovisual redundancy	Arithmetic redundancy	Coding redundancy	interpixel redundancy
	Which one of the following must not be part of image				
21	lossless compression is desired?	Quantizer	Symbol Encoder	Symbol Decoder	Manner
			-,	-,	- PE E E

22	Which of the following steps reduces psychovisual redundancy	Dividing image into blocks	Taking DCT of each block		Quantization of DCT
22	in Trasform coding method?	of size 8X8	of size 8X8	zigzag reordering	components
	Structuring element is also				
23	called	pixels	lines	subimage	noise
		dilation followed by	erosion followed by	erosion followed by	dilation followed by
24	Closing operation is	erosion	dilation	erosion	dilation
	In which morphological operation boundary of the object is subtracted from the				
25	object	Opening	Closing	Thickening	Thining

Scheme	R2012
Semester	VII
Course Code	CPE7024
Course Name	Software Architecture

Question No.	Answer-Key					
1	It is a division of functionality together with data flow between the pieces					
2	Client and server is an architectural style					
3	rocess Structure					
4	Performance					
5	Denial Service & IP source address spoofing					
6	A dynamic structure requires a simulator to perform analysis					
7	The architect should have the technical requirements for the system and an articulated and prioritized list of qualitative properties					
8	An architecture is foremost an abstraction of a system that suppresses details of the components that do not affect how they are used					
9	All the system to be stable should posses an architecture					
10	Architecture is high level design					
11	A set of semantic constraints					
12	Main program and subroutine Architecture, Object Oriented or abstract data type system					
13	Data Centered Architectures					
14	They interact with the environment in limited ways					
15	Remote Procedure Call system					
16	Mid-Level Design Patterns					
17	form					
18	Supporting Software Reuse					
19	repositories					
20	both b and c					
21	interface component					

22	network architecture
23	OSI reference model
24	Software Product & Engineering Design
25	Analysis occurs at start of product design with a product idea

Scheme	R2012
Semester	VII
Course Code	CPE7024
Course	
Name	Software Architecture

Question No.	Question	а	b	c	d
			It is a division of		L
			functionality together with		
			data flow between the		
	What is a Reference Model?		pieces, It is standard		It is standard
	What is a Reference model.	It is a division of	decomposition of a known		decomposition of a
		functionality together	problem into parts that		known problem into parts
		with data flow between	cooperatively solve a	It is a description of	that cooperatively solve
1		the pieces	problem	component types	a problem
					Client and server may be
	which of the following can be considered regarding client	Client and server is not an	Client and server is an	They are set of early design	considered as an
2	and server?	architectural style	architectural style	decisions	architectural style
3	conceptual view?	Module Structure	Process Structure	Uses Structure	Data flow
4	Which of the following factors are discernable by run-time?	Performance	Modifiability	Portability	Integrability
-	Which among the following are the types of threats that are ger	Denial source	Devial	ID	Denial Service & IP source
5			Denial source	IP source address spooting	address spoofing
		A dynamic structure	does not requires a		
	Which of the following is true?	requires a simulator to	simulator to perform any	Connectors transfers	
6		perform analysis	analvsis	data unidirectionaly	none
		1	The architect should		
			have the technical		
			requirements for the		
	What makes a good architecture?	The architecture may not be	system and an		
			articulated and prioritized		An architecture is not
			list of qualitative	The architecture may not	dependable on
7			properties	be well documented	requirements
				An anabita atuma ia	
				foremost an abstraction	
	Which of the following are correct statements?			of a system that	Architecture an exist
	which of the following are correct statements:	An architecture may or	An architecture is not	suppresses details of the	independently of its
		may not defines	dependable on	components that do not	description or
8		components	requirements	affect how they are used	specification

			Architecture an exist		
		System itself is a componen	independently of its	All the system to be	
	What does "Every software system has an architecture"		description or	stable should posses an	is set of constraints on
9	implies?		specification	architecture	architecture
		Architecture is low level	Architecture is mid level of	Architecture is high level	
10	Which of the following is true?	design		design	None of the mentioned
11	Architectural styles is composed of which of the following?	A set of component types th	A topological layout of these	A set of semantic constraints	Main program and
11		1		1	Main program and
					Main program and
				Object Oriented or	Object Oriented or
	Which of the following type has the main goal to achieve	Main program and subroutin	Remote Procedure Call	abstract data type	abstract data type
12	Modifiability?		system	system	system
12	In which of the following style new clients can be added		Call and Return	Data Centered	Remote Procedure Call
13	easily?	Data Flow Architecture	Architecture	Architectures	system
15		They interact with the	They simplify systems	Interactive applications	oyotom -
	What are the advantage of pine & filters?	environment in limited	maintenance and	are encouraged by the	They return no state
14		ways	enhance its reuse	style	information
15	Which of the following type has the main goal to achieve perfor	Main program and subrou	Remote Procedure Call s	Object Oriented or abstra	Data Centered Architectu
			Mid-Level Design	Data Structures and	
16	Which design pattern focus on the design patterns movement?	Architectural Styles	Patterns	Algorithms	Programming Idioms
17	(dynamic) behaviour of the pattern?	name	applications	consequences	form
18	problem domain promotes software reuse and, hence, quality	Communication	Documentation	Efficiency	Reuse
19	development through maintenance in CASE tools?	database	repositories	registers	designs
20	should be based on system	accesibilty	control	data	both b and c
21	component that may need tobe integrated into software	component	database component	interface component	memory msg component
22	connections and interactions of its physical and logical	Computer Architecture	Architecture	Internet Architecture	network architecture
23	The two most important network architecture or reference mode	Layered reference model	OSI reference model	DSL reference model	TCP/IP reference model
24	Software Design consists of	Software Product Design	Design	Engineering Design	None of the mentioned
25	process?	of product design with a	end of engineering	resolution produces the	resolution produces the

Scheme	R2012
Semester	VII
Course code	CPE7025
Course Name	Soft Computing

Question No.	Answer-Key
1	Face recognition system.
2	Evolutionary Computing
3	classes are predefined
4	w1=1,w2=1,T=2.
5	Perceptron has the mechanism to learn.
6	0.2 is effective choice of learning rate.
7	Not linearly separable
8	Kohonen's Self-Organizing Map (SOM)
9	Linearly separable
10	weights are adjusted with respect to difference between desired output and actual output
11	$\{0.1, 0.5, 0.2, 0.1, 0.8\}$
12	Defuzzified value =70
13	Is a subset of the fuzzy Cartesian product $A \times B$.
14	Defuzzify final output
15	the context of the application
16	Restricted scalar multiplication
17	antecedent
18	network are needed
19	Auxilary
20	Genetic Algorithm
21	Newton's method
22	Permutation encoding
23	initial population->fitness calculation->selection->crossover->mutation->new population
24	154326789
25	Roulette wheel

Scheme	R2012
Semester	VII
Course code	CPE7025
Course Name	Soft Computing

Question. No.	Question	a	b
		Square root	
		calculation of	Integration
	Choose from the list the problem that can be	polynomial	calculation
1	solved using soft computing	function	problem.
	Choose the correct techniques used in soft	Evolutionary	Regression
2	computing.	Computing	technique
	In supervised learning	classes are not	classes are
3		predefined	predefined
	Implement a single neuron with threshold		
	activation function to simulate working of logical		
	AND gate. Give the correct values of weights and	w1=1,w2=-1,T=-	w1=-1,w2=-
4	threshold.	1	1,T=-1
		Perceptron	
		introduced the	Perceptron
		concept of only	has the
	How is perceptron different from Mc culloch pitts	binary weights	mechanism
5	model of neuron?	for input.	to learn.
	You ran gradient descent for 20 iterations with		
	learning rate=0.2 and compute cost for each		Try larger
	iteration. You observe that cost decreases after	0.2 is effective	values of
	each iteration .Based on this which conclusion is	choice of	learning rate
6	more suitable.	learning rate.	like 1.
	The XOR function cannot be realized by a		Not linearly
7	Perceptron because the input patterns are	Not bipolar	separable
		Kohonen's Self-	Multi layer
	Which of the following nets employ unsupervised	Organizing Map	Perceptron(
8	learning?	(SOM)	MLP)
	Which of the following kinds of classification	Linearly	Non-linearly
9	problems can be solved by a perceptron ?	separable	separable

10	In Delta Rule for error minimization	weights are adjusted with respect to change in the output	weights are adjusted with respect to difference between desired output and actual output
	If C and D are two fuzzy sets with membership		
	$uc(\gamma) = \{0, 2, 0, 5, 0, 6, 0, 1, 0, 9\}$		
	$\mu d(\chi) = \{0.1, 0.5, 0.2, 0.7, 0.8\}$	{0.1, 0.5, 0.2,	{0.2,0.5,0.6,0.
11	then the value of $\mu c \cap \mu d$ will be	0.1,0.8}	7,0.9}
	Apply defuzzification on the following: (Link of		
	diagram : https://drive.google.com/file/d/105i4DU427au_6m	Defuzzified	Defuzzified
12	g-7arSWRJCiwAIt7CC/view?usp=sharing)	value =100	value =70
		Is a subset of the	Is a union of
10	A fuzzy relation R between two fuzzy sets A and	fuzzy Cartesian	the fuzzy set
13	B	product $A \times B$.	A and B.
		E: f (1	Apply
14	What is the last steps in fuzzy controller system?	input	method
		mpat	the context
	The nature of the membership function of a fuzzy	the type of the	of the
15	set depends on	application	application
	-		Restricted
			scalar
		Alpha-cut	multiplicatio
16	Which of the following is a fuzzification process ?	decomposition	n
	While designing rule in fuzzy controllers ,in case		
17	of $=>$ operator, the proposition occurring before	antaadant	aangaguant
17	the -> symbol is called	amecedem	consequent
		In access of norma	
		fuzzy systems	
		problem specific	Capabilities
		membership	of
		functions and	independent
		dataset for	technique is
		neural network	not fully
18	What are the limitations of using hybrid systems?	are needed.	utilised

19	Choose the correct class of hybrid systems.	Linear	Parallel
	Which of the techniques mentioned below fall	Genetic	Newton's
20	under derivative free optimization?	Algorithm	Method
	If the second derivatives are easy to	Newton's	Steepest
21	compute, which method gives better result.	method	Descent
			Value
22	Which encoding technique can be used for TSP?	Binary encoding	encoding
			initial
		Fitness	population-
		calculation-	>fitness
		>initial	calculation-
		population-	>selection-
		>crossover-	>crossover-
		>mutation-	>mutation-
		>selection->new	>new
23	Give the steps of working of Genetic Algorithm.	population	population
	Perform inverse mutation on highlighted part of		
24	following chromosome: hromosome: 123456789	123456789	6789543210
	Choose the correct selection operation used in		
25	genetic algorithm.	Roulette wheel	Bit swapping

6		
r		
r		
L		
<u>I</u>		
1		

С	d
Finding the	
shortest path for	Face recognition
given problem	system.
	Adversarial
Aprior approach	techniques
classes are not	classification is
required	not done
w1=1,w2=1,T=2	w1=-1,w2=1,T=-
	2
In perceptron	Perceptron uses
inputs are	only linear
limited to	activation
boolean values	functions
0.2 is not an	
effective choice	The model is
of learning rate.	overfitting.
8	0
	Linearly
Discrete	seperable
Backpropogation	Adaline
	Partially
Fully solvable	solvable

weights are adjusted with respect to difference between input and output	weights are adjusted with respect to only output
{0.2, 0.5,0.2,	{0.1, 0.5, 0.6,
0.1,0.8}	0.1,0.8}
Defuzzified value =55	Defuzzified value =90.
Is a intersection of the fuzzy set A and B.	Is a complement of union of the fuzzy set A and B.
Defuzzify final	Perform
the purpose of the application	the difficulty level of application
Controlled Vector Division	Restricted Vector addition
conjunction	disjunction
Combined system requires less computing power	Combined systems are less accurate

Auxilary	Statistical
Steepest Descent	Gradient descent
	Stochastic Hill
Gradient Descen	Climbing
Permutation	
encoding	Tree encoding
initial population-	selection->initial
>selection-	population-
>crossover-	>crossover-
>mutation-	>mutation-
>fitness	>fitness
calculation-	calculation-
>new population	>new population
154326789	123459876
Uniform	Permutation
selection	technique

1			
	h		
	L		
1			
1			

	_	
	I	
]

Scheme	R2012
Semest	
er	VII
Course	
Code	CPE7026
Course	Enterprise Resource Planning and Supply Chain
Name	Management
Question	
No.	Answer-Key
1	All of the mentioned
2	Middleware
	It is best to treat ERP as an investment but not as a cost-
3	cutting measure.
4	A client layer and two server layers
5	replacing managerial staff
6	ALL of the mentioned
7	Information
8	strategic information
9	Creation of Integrated Data Model
10	all process stakeholders
11	Barcode
12	5
13	Customers, resellers, partners, suppliers, and distributors
14	a time-phased stock replenishment plan for all levels of a distribution network
15	Purchase requisition from production department
16	Electronic Data Interchange
17	2 & 3
18	Cloud-based ERP
19	EAI
20	Vendor independence, Process integeration
	The management of resources supplied from an
21	organisation to its customers and intermediaries
22	Supply chain visibility
23	a high level of both demand and supply uncertainty
24	SAP
25	brainstorming.

Scheme	R2012			
Semest				
er	VII			
Course				
Code	CPE7026			
	Enterprise Resource			
Course	Planning and Supply			
Name	Chain Management			
Question				
No.	Question	а	b	С
	ERP system can be defined	ERP systems provide	ERP systems enable	ERP systems have
	as	a foundation for	people in different	been widely
		collaboration	business areas to	adopted in large
		between	communicate	organisations to
		departments		store critical
				knowledge used
				to make the
				decisions that
				drive the
				organisation's
				performance
				P
1				
	Which types of software,	Middleware	Enterprise	Automated
	sit in the middle of and		application	business process
	provide connectivity		integration	
	between two or more		middleware	
2	software applications?			
2	As automation onbancos	It is bast to troat	It is not bast to	It is bast to treat
	As automation enhances		It is not pest to	TERP as an
	in a process and results in making it more officient	ERP as an	invoctment as well	ERP as an
	the entimel way to	investment as well	investment as well	uisinvestment as
	une opunnar way to	as a cost-culling	as a cost-cutting	well as a COSL-
	accomulate ERP for the	measure.	measure.	cutting measure.
2	organization is			
3				
	Which statement defines	Three server layers	A client layer and	Two client layers
	the correct structure of		two server layers	and one server
	the 3 tier architecture in			layer
4	ERP			

	The disadvanatage of business intelligence is?	replacing managerial staff	improved decision making	improved business
5				processes
6	Reverse engineering of data focuses on	Internal data structures	Database structures	ALL of the mentioned
7	Data mining is the process of identifying valid, new, potentially useful, and ultimately clear from databases	Decision	Strategies	Information
8	OLAP is used to transform data warehouse data into 	reports	strategic information	existing data
9	Which is one of the most important outcome of the ERP implementation?	Creation of Organisational Model	Creation of Integrated Data Model	Creation of Business Model
10	The reengineering team must consider view of in the redesign of a process	all resources	all process stakeholders	existing system
11	Set of parallel printed lines with different thickness of black and white character is called	magnetic code	RFID	Barcode
12	How many packages are selected in pre-selection phase ?	5	7	11
	Who are the prime users of SCM systems	Sales, marketing, customer service	Accounting, finance, logistics, and production	Customers, resellers, partners, suppliers, and distributors
13				

	Distribution Resource Planning (DRP) is	a transportation plan to ship materials to warehouses	a time-phased stock replenishment plan for all levels of a distribution network	a shipping plan from a central warehouse to retail warehouses
14				-
15	Which one does not belong to the sales & distribution process?	Sales order	Material delivery	Purchase requisition from production department
16	EDI is represented by	Electronic Data Interface	Exchange Data Interchange	Exchange Data Interface
17	 Which are the two objectives of JIT approach applied to the organisation. Production system 2. Elimination of Waste 3. Total Employee Involvement 4. Production philosophy 	1 & 2	2 & 3	1 & 4
18	is a system of enterprise resource planning software and tools that are hosted and managed offsite in the cloud by the vendor.	Generalist ERP.	Cloud-based ERP	Small Business ERP
19	is the use of technologies and services across an enterprise to enable the integration of software applications and hardware systems.	EAI	ERP	SCM

	EAI can be used for	Human Capital	Industry specific	Performance
	following purposes	Management, SOA	portfolios, business	Management,
			solutions	Integeration
20				Support
	Logistics is an integral part	The management of	An emphasis on	A supply chain
	of supply chain	material resources	using the supply	that emphasises
	evolution best	organisation from		product to
	represents outbound	its suppliers and	who are actively	product to
	logistics	other partners	involved in product	
	0		and service	
			specification	
21				
	What does a company's	Supply chain	Password and user	Radio-frequency
	information system need	visibility	name reminders	identification of
	to deliver to different			products
	parties who need to			
	information of an			
	organisation, whether			
	they be employees,			
	suppliers, logistics service			
	providers or customers?			
22				
22	An agile supply chain	either demand or	a high level of	a high level of
	takes care of	supply uncertainty	supply	both demand and
			disruptions/uncert	supply
23			ainty	uncertainty
	ASAP road-map is a	SAP	ORACLE	PeopleSoft
	detailed project plan by			
	that describes all			
	activities in an			
24	Implementation			
	New technologies are	planning	implementing.	brainstorming.
	considered in which phase			
	ot re-engineering			
25				

improved
operational
efficiency
None of the
mentioned
Account
tables
Creation of Data
Model
legacy system
QR code
More than 15
All of the above

material requirements planning with feedback loop from distribution centers	
Billing	
Electronic Data	
Interchange	
5 & 4	
open source erp	
CRM	

Vendor
independence,
Process integeration
The management of
resources supplied
from an organisation
to its customers and
intermediaries
None of the above
a high level of
demand uncertainty
Baan
training