University of Mumbai

Program: Computer Engineering Curriculum

Scheme: Rev2019 Examination: Second Year

Semester: III

Course Code: CSC303 Course Name : Data Structures

Q1.	tions compulsory 2 marks each(40 Marks)Identify the following data structure which is an Abstract Data Type.		
A	TREES		
B	QUEUE		
C	ARRAY		
D	GRAPH		
Q2	struct node		
	{		
	struct node *prev;		
	int num;		
	struct node *next;		
):		
	typedef struct node <u>NODE</u> ; NODE * <u>ptr</u> ;		
	In a Doubly linked list which statement is correct for dynamically allocating a memory for Node.		
Α	ptr=(NODE*)malloc(sizeof(NODE));		
B	ptr=(NODE*)malloc(NODE);		
C	ptr=(NODE*)malloc(sizeof(NODE*));		
D	ptr=(NODE)malloc(sizeof(NODE));		
Q3	A linked list in which last node of the list points to the first node of the list is linked list		
А	Doubly linked List		
B	Circular Linked List		
C	Singly Linked List		
D	Linked Queue		
D			
Q4	A circularly linked list is used to represent a Queue. A single variable p is used to access the Queue. To which node should p point such that both the operations enQueue and deQueue can be performed in constant time?		
	Front Rear		
	P ?		
А	Rear node		
В	Front node		
С	Single pointer dont support		

Q5	Consider the function f defined below.
	struct item {
	int data;
	struct item * next;
	};
	int f(struct item *p) {
	return ((p == NULL) (p ->next == NULL)
	((p->data <= p -> next -> data) &&
	f(p-> next)));
	}
	For a given linked list p, the function f returns 1 if and only if
A B	The list is empty or has exactly one element
C B	the elements in the list are sorted in non-decreasing order of data valu the elements in the list are sorted in non-increasing order of data value
D	not all elements in the list have the same data value
Q6	The following C function takes a simply-linked list as input argument. It modifies
_	the list by moving the last element to the front of the list and returns the modified
	list. Some part of the code is left blank.
	typedef struct node {
	int value;
	struct node *next;
	} Node;
	Node *move_to_front(Node *head) {
	Node *p, *q; if ((head = = NULL: (head->next = = NULL)) return head;
	q = NULL; p = head;
	while (p-> next !=NULL) {
	q=P;
	p=p->next;
	}
	return head;
	}
	Choose the correct alternative to replace the blank line.
A	q = NULL; p->next = head; head = p;
B C	q->next = NULL; head = p; p->next = head;
D	head = p; p->next = q; q->next = NULL; q->next = NULL; p->next = head; head = p;
	q > 10 n = 10 c c, p > 10 n = 10 a d, 10 a d = p,
Q7	The postfix form of $(A + B) / (C + D) - (D * E)$
Ā	AB+CD+/DE*-
В	AB+/CD+-DE*
С	AB+CD/+DE*-
D	AB+CD+/-DE*
Q8	Result of the postfix expression 832*4+- is?
A	3
B	2
C	-3
D	-2

Q9	Consider the linear queue given below which has FRONT = 1 and REAR = 5.					
	Now perform the following operations on the queue: (a) Add G (b) Delete two					
	letters(c) Add H (d) Add I (e) Delete three letters.					
	A B C D E					
А	H, G, I					
В	G, H, I					
С	G, I, H					
D	H, I, G					
Q10	Which of the following is an example of stack?					
A	Person standing for withdrawing money					
В	A set of bangles worn by a lady on her arm					
С	Round Robin Process scheduling					
D	Network Printing Job					
Q11	Given a hash table of size 100, map the key 1892 to an appropriate location					
_	in the hash table using the Multiplication function.					
А	30					
В	32					
С	34					
D	35					
Q12	Linear Search is inefficient as compared to binary search when array is					
A	small, unsorted					
В	small, sorted					
C	large, unsorted					
D	large, sorted					
Q13	Which of the following is not a limitation of binary search algorithm?					
A	must use a sorted array					
В	requirement of sorted array is expensive when a lot of insertion and deletions are needed					
С	there must be a mechanism to access middle element directly					
D	binary search algorithm is not efficient when the data elements more than 1500.					
Q14	Starting from the node A at the top, which algorithm will visit the least number of					
	nodes before visiting the node F?					
	Payment					
	A					
	BC					
А	Breadth First Search					
B	Depth First Search					
С	DFS and BFS will visit same number of nodes 3 P a					
D	Both BFS and DFS will not visit node F					

	$\overline{\mathbf{r}}$			
	(1) (4)			
	* <u>3</u> <u>*</u> *6			
	What will be the topological ordering for the above graph?			
А	123456			
B	123465			
C	132456			
D	124536			
Q16	To represent hierarchical relationships between elements, Which data structure is suitable?			
A	Stack			
В	Queue			
С	Graph			
D	Tree			
Q17	A binary tree T has n leaf nodes. The number of nodes of degree 2 in T is			
$\frac{\sqrt{1}}{A}$	$\log_2 n$			
B	n-1			
С	n/2			
D	n			
Q18	6			
	3 10			
	(2) (5) (8) (20)			
	$\begin{array}{c} 1 \\ 1 \\ \end{array}$			
	What will be the Pre-order traversal output of above binary tree?			
A	6 3 2 1 5 4 10 8 7 9 20 30			
B	1 2 3 4 5 6 7 8 9 10 20 30			
<u>C</u>	1 2 4 5 3 7 9 8 30 20 10 6			
D	6 3 10 2 5 8 20 1 4 7 9 30			
Q19	Select the correct statement from below with respect to the M-way search tree.			
A	Number of Subtree may vary from 1 to M			
В	A node can have 1 to M-1 values in every node.			
0	Compulsory every node should have M-1 values			
С				

Q20	45 36 48 27 40 46 49 18 After adding a left child to the node 18 in the AVL Tree above, how many nodes will be unbalanced?
Α	1
В	2
C	3
D	4

Q2. (20 Marks Each)	Solve any Four out of Six 5 marks each					
А	Explain various operations performed on Data Structures.					
В	Explain Double Ended Queue.					
С	Write a function to implement following operations on doubly linked listi. Insert at beginningii. Delete from beginningiii. Display					
D	Construct the AVL Tree for the following numbers.112233445598765					
Е	What are different ways to represent graph in memory?					
F	Consider a hash table with size=10. Using quadratic probing insert the keys 27, 72, 63, 42, 36, 18, 29 and 101 into the hash table. Take c1=1 and c2=3.					

Q3. (20 Marks Each)	Solve any T	wo Quest	ions out of	Three		10 m	arks each
А	Write a C p functions: i. Insert nod ii. Insert a n iii. Display	e in the be ode at the	ginning	circular li	nked list th	at perform	s following
В	Compute the Character Count	e Huffman A 9	code for ea B 12	ch symbol C 5	D 45	E 16	F 13
С	Explain the Search.	DFS wit	h example.	Also wri	te the pro	gram for 1	Depth First