University of Mumbai

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: Second Year Semester: III

Course Code: CSC302 Course Name : Discrete Structures and Graph Theory Max. Marks: 80

Time: 1 hour

Q1. All qu	estions compulsory 2 marks each (40 Marks)		
Q1.	A set containing only one element is called a		
Option A:	Unique set		
Option B:	Primary set		
Option C:	Singleton set		
Option D:			
Q2.	Warshall's Algorithm is used to find closure		
Option A:	Transitive		
Option B:	Symmetric		
Option C:	Asymmetric		
Option D:	Reflexive		
Q3.	If every element of set A is an element of set B, then A and B can be denoted by		
	which of the following notation?		
Option A:	A == B		
Option B:	$A \rightarrow B$		
Option C:	$A \subseteq B$		
Option D:	$A \not\subset B$		
Q4.	If H is subgroup of G, then which of the following is incorrect about H?		
Option A:	The identity element e belongs to H		
Option B:	If $a \in H$ then $a^{-1} \in H$		
Option C:	The identity element e should not belong to H		
Option D:	If a, b belong to H the a*b also belongs to H		
Q5.	is a compound statement obtained by combining two simple statements		
	by 'And'.		
Option A:	Disjunction		
Option B:	Conjunction		
Option C:	Implication		
Option D:	Negation		
Q6.	For a semi-group $(Z^+, +)$ the identity element is		
Option A:	0		
Option B:			
Option C:	2		
Option D:	-1		

Q7.	Obtain the DNF of $(p \supset q) \Lambda (\sim p \Lambda q)$		
Option A:	poq		
Option B:	~p \Lambda q		
Option C:	Р		
Option D:	Q		
Q8.	Solve using warshall's algorithm $R = \{(a,b),(b,a),(b,c)\}$ defined of A where		
	$A = \{a, b, c\}$		
Option A:	$\{(a,a),(c,c),(b,a),(b,b),(b,c)\}$		
Option B:	$\{(a,a),(a,b),(a,c),(b,c)\}$		
Option C:	$\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b)\}$		
Option D:	$\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c)\}$		
Q9.	Consider a parity check matrix. Find the (2,5) group code function eH : B2 -> B5		
	$ \left(\begin{array}{c} 011\\ 011\\ 100\\ 010\\ 001 \end{array}\right) $		
Option A:	e(00)=00000 e(01)=01010 e(10)=10011 e(11)=11000		
Option B:	e(00)=00001 e(01)=01010 e(10)=10011 e(11)=11001		
Option C:	e(00)=00000 e(01)=01111 e(10)=10010 e(11)=11000		
Option D:	e(00)=00000 e(01)=01011 e(10)=10011 e(11)=11111		
Q10.	Let $f(x)=x+2$, $g(x)=x-2$, & $h(x)=3x$, for $x \in R$, where R is a set of real numbers. Find gof		
Option A:	X		
Option B:	6x-2		
Option C:	x+1		
Option D:	x-3		
Q11.	Let $A = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group under multiplication modulo 7. Identify the inverse of elements 2 and 3.		
Option A:	Inverse of 2 is 4 and inverse of 3 is 5		

Option B:	Inverse of 2 is 5 and inverse of 3 is 4		
Option C:	Inverse of 2 is 6 and inverse of 3 is 1		
Option D:	Inverse of 2 is 1 and inverse of 3 is 6		
Option D.			
Q12.	How many friends must you have to guarantee that at least five of them will have		
Q12.	birthdays in the same month?		
Option A:	49		
Option B:	49		
Option C:	60		
Option D:	61		
Q13.	Identify the maximal and minimal elements in the given Hasse diagram of a		
2.01	poset.		
	6 5		
Option A:	Maximal: 20 and Minimal: 2		
Option B:	Maximal: 12, 20 and Minimal: 2		
Option C:	Maximal: 6, 12 and Minimal: 2, 5		
Option D:	Maximal: 5, 20 and Minimal: 2, 6		
014	There can be possible sub graphs of any graph.		
Q14.			
Option A:	exactly one		
Option B:	Many Zero		
Option C: Option D:	at most one		
Option D.	at most one		
Q15.	If A and B are true statements and X is a false statement, find the truth value of:		
Q15.	\sim X \wedge (\sim A V \sim B)		
Option A:	T		
Option B:	F		
Option D:	T and F		
Option D:	T or F		
Option D.			
Q16.	Consider a function f:A->B is bijectivewhich of the following is INCORRECT?		
Option A:	f^{-1} :B->A exist		
Option B:	f^-1:B->A unique		
Option C:	f^-1 is bijective		
Option D:	f ^-1 is only injective		
-ruon D,			
Q17.	If the origin and terminus of a walk are same, the walk is known as?		
Option A:	Path		
Option B:	Closed		
Option C:	Open		
Option D:	Bound		
option D.			
Q18.	The conjunctive normal form(CNF) of ~ $[(p V ~q) \land ~r]$ is		
	J		

Option A:	$(r V \sim p) \land (r V q)$
Option B:	(~ r V p) A (~ r V q)
Option C:	$(r \land \sim p) V (r \land q)$
Option D:	$(r V p) \land (r V \sim q)$
Q19.	A binary operation on * is said to be associative if
Option A:	a*(b*c)=c*(d*e)
Option B:	a*(b*c)=ab*ac
Option C:	a*(b*c)=(a*b)*c
Option D:	b*c=c*b
Q20.	In a group of 300 persons, 160 drink tea and 170 drink coffee, 80 of them drink
	both, How many persons do not drink either?
Option A:	50
Option B:	40
Option C:	60
Option D:	45

Q2. (20 Marks Each)	Solve any Four out of Six 5 marks each	
А	Show that if any 10 positive integers are chosen two of them will have same remainder when divided by 9 using pigeonhole principle.	
В	Let $A = \{a, b, c, d, e, f, g, h\}$. Consider the following subsets of A $A1 = \{a, b, c, d\} A2 = \{a, c, e, g, h\}$ $A3 = \{a, c, e, g\} A4 = \{b, d\} A5 = \{f, h\}$ Determine whether following is partition of A or not. Justify your answer. (i) $\{A1, A2\}$ (ii) $\{A3, A4, A5\}$	
С	Let $A = \{1, 2, 3, 4\}$. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive. $a. R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 3), (3, 4), (4, 4)\}$ $b. R = \{(1, 3), (1, 1), (3, 1), (1, 2), (3, 3), (4, 4)\}$ $c. R = \{(1, 2), (1, 3), (3, 1), (1, 1), (3, 3), (3, 2), (1, 4), (4, 2), (3, 4)\}$	
D	Determine the Eulerian (Euler) and Hamiltonian paths and circuits, if exists, in the following graphs.	
Е	Determine if following graphsG ₁ and G ₂ are isomorphic or not.	

	2 1 5 61	a c d d d G2
F	Prove that the set $G = \{1, 2, 3, 4, multiplication modulo 7.$	5, 6} is a finite Abelian group under

Q3. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each
A	In a class 42% students passed in Maths, 45% passed in Physics, 41% passed in Chemistry, 16% passed in Maths and Physics, 19% passed in Physics and Chemistry, 18% passed in Chemistry and Mathematics. Find the number of students who passed in all 3 subjects. If there were 260 students in a class and 15% students failed in all subjects.
В	If f, g, h: R R are defined as $f(x)=x+2$, $g(x)=1/x 2 + 1$, $h(x)=3$, find i)g o h o $f(x)$ ii) h o g o $f(x)$ iii) g o f^{-1} o $f(x)$
С	Let $A = \{1, 2, 3, 4\}$, $R = \{(1, 1), (1, 2), (1, 4), (2, 4), (3, 1), (3, 2), (4, 2), (4, 3), (4, 4)\}$. Find the transitive closure by Warshall's algorithm.