University of Mumbai

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: Second Year Semester: III

Course Code: CSC302 Course Name : Discrete Structures and Graph Theory Max. Marks: 80

Time: 1 hour

Q1. All qu	estions compulsory 2 marks each (40 Marks)
Q1.	A set containing only one element is called a
Option A:	Unique set
Option B:	Primary set
Option C:	Singleton set
Option D:	Universal set
Q2.	Warshall's Algorithm is used to find closure
Option A:	Transitive
Option B:	Symmetric
Option C:	Asymmetric
Option D:	Reflexive
Q3.	If every element of set A is an element of set B, then A and B can be denoted by
	which of the following notation?
Option A:	A == B
Option B:	$A \rightarrow B$
Option C:	$A \subseteq B$
Option D:	$A \not\subset B$
Q4.	If H is subgroup of G, then which of the following is incorrect about H?
Option A:	The identity element e belongs to H
Option B:	If $a \in H$ then $a^{-1} \in H$
Option C:	The identity element e should not belong to H
Option D:	If a, b belong to H the a*b also belongs to H
Q5.	is a compound statement obtained by combining two simple statements
	by 'And'.
Option A:	disjunction
Option B:	conjunction
Option C:	Implication
Option D:	negation
06	For a sami group $(\mathbf{Z}^+ \perp)$ the identity element is
Qu.	$\frac{1}{10}$
Option R:	U 1
Option C:	2
Option D:	-1
Option D.	-1

Q7.	Obtain the DNF of $(p \circ q) \Lambda (\sim p \Lambda q)$
Option A:	pcq
Option B:	$\sim p \Lambda q$
Option C:	p
Option D:	q
Q8.	Solve using warshall's algorithm $R = \{(a,b), (b,a), (b,c)\}$ defined of A where
	$A = \{a, b, c\}$
Option A:	$\{(a,a),(c,c),(b,a),(b,b),(b,c)\}$
Option B:	$\{(a,a),(a,b),(a,c),(b,c)\}$
Option C:	$\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b)\}$
Option D:	$\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c)\}$
Q9.	Consider a parity check matrix. Find the (2,5) group code function eH : B2 -> B5
	010
Outing A.	
Option A:	e(00)=00000 e(01)=01010 e(10)=10011 e(11)=11000
Option B:	e(00)=00001 e(01)=01010 e(10)=10011 e(11)=11001
Option C:	e(00)=00000 e(01)=01111 e(10)=10010 e(11)=11000
Option D:	e(00)=00000 e(01)=01011 e(10)=10011 e(11)=11111
010	
Q10.	Let $f(x)=x+2$, $g(x)=x-2$, & $h(x)=3x$, for $x \in \mathbb{R}$, where \mathbb{R} is a set of real numbers.
Outing A.	Find gof
Option A:	X
Option B:	0X-2
Option C:	X+1
Option D:	X-3
Q11.	Let $A = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group under multiplication modulo 7.
	Identify the inverse of elements 2 and 3.
Option A:	Inverse of 2 is 4 and inverse of 3 is 5

Option B:	Inverse of 2 is 5 and inverse of 3 is 4
Option C:	Inverse of 2 is 6 and inverse of 3 is 1
Option D:	Inverse of 2 is 1 and inverse of 3 is 6
Q12.	How many friends must you have to guarantee that at least five of them will have
	birthdays in the same month?
Option A:	49
Option B:	48
Option C:	60
Option D:	61
Q13.	Identify the maximal and minimal elements in the given Hasse diagram of a
	poset.
Ontion A.	Maximal: 20 and Minimal: 2
Option R:	Maximal: 20 and Minimal: 2
Option C:	Maximal: 6, 12 and Minimal: 2, 5
Option D:	Maximal: 0, 12 and Minimal: 2, 5
Option D.	
014	There can be possible sub graphs of any graph
Option A:	exactly one
Option B:	many
Option C:	Zero
Option D:	at most one
Q15.	If A and B are true statements and X is a false statement, find the truth value of: $\sim X \land (\sim \land \vee \sim B)$
Ontion A:	T
Option R:	F
Option C:	T and F
Option D:	T or F
option D.	
016.	Consider a function f:A->B is bijectivewhich of the following is INCORRECT?
Option A:	f^-1 :B->A exist
Option B:	f^{-1} : B->A unique
Option C:	f^-1 is bijective
Option D:	f-1 is only injective
1	
Q17.	If the origin and terminus of a walk are same, the walk is known as?
Option A:	Path
Option B:	Closed
Option C:	Open
Option D:	Bound
- <u>r</u> · · · · - · ·	
Q18.	The conjunctive normal form(CNF) of ~ $[(p V ~q) \land ~r]$ is

Option A:	$(r V \sim p) \land (r V q)$
Option B:	(~ r V p) A (~ r V q)
Option C:	$(r \land \sim p) V (r \land q)$
Option D:	$(r V p) \land (r V \sim q)$
Q19.	A binary operation on * is said to be associative if
Option A:	a*(b*c)=c*(d*e)
Option B:	a*(b*c)=ab*ac
Option C:	a*(b*c)=(a*b)*c
Option D:	b*c=c*b
Q20.	In a group of 300 persons, 160 drink tea and 170 drink coffee, 80 of them drink
	both, How many persons do not drink either?
Option A:	50
Option B:	40
Option C:	60
Option D:	45

Q2.	Solve any Four out of Six5 marks each		
(20 Marks			
Each)			
А	Show that if any 10 positive integers are chosen two of them will have same remainder when divided by 9 using pigeonhole principle.		
	Let $A = \{a, b, c, d, e, f, g, h\}$. Consider the following subsets of A $A1 = \{a, b, c, d\} A2 = \{a, c, e, g, h\}$		
В	$A3 = \{a, c, e, g\} A4 = \{b, d\} A5 = \{f, h\}$		
	Determine whether following is partition of A or not. Justify your answer. (i) {A1, A2} (ii) {A3, A4, A5)		
	Let $A = \{1, 2, 3, 4\}$. Determine whether the relation is reflexive, irreflexive symmetric, asymmetric, antisymmetric or transitive.	e,	
С	a. $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 3), (3, 4), (4, 4)\}$ b. $R = \{(1, 2), (1, 1), (2, 1), (1, 2), (2, 2), (3, 3), (4, 3), (3, 4), (4, 4)\}$		
	$\begin{bmatrix} 0, R = \{(1, 3), (1, 1), (3, 1), (1, 2), (3, 3), (4, 4)\}\\ c, R = \{(1, 2), (1, 3), (3, 1), (1, 1), (3, 3), (3, 2), (1, 4), (4, 2), (3, 4)\} \end{bmatrix}$		
	Determine the Eulerian (Euler) and Hamiltonian paths and circuits, if exist	s,	
	in the following graphs.		
D			
E	Determine if following graphsG ₁ and G ₂ are isomorphic or not.		

	$\begin{array}{c} 2\\ 1\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
F	Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite Abelian group under multiplication modulo 7.

Q3.	Solve any Two Questions out of Three	10 marks each
(20 Marks		
Each)		
A	In a class 42% students passed in Maths, 45% passed passed in Chemistry, 16% passed in Maths and Physic Physics and Chemistry, 18% passed in Chemistry and Mat number of students who passed in all 3 subjects. If there in a class and 15% students failed in all subjects.	l in Physics, 41% cs, 19% passed in thematics. Find the were 260 students
В	<i>If f, g, h: R R are defined as</i> $f(x) = x+2$, $g(x) = \frac{1}{x^2} + 1$, $h(x) = x$ <i>i)g o h o f(x) ii) h o g o f(x) iii) g o f⁻¹ o f(x)</i>	3, find
С	Let $A = \{1,2,3,4\}$, $R = \{(1,1),(1,2),(1,4),(2,4),(3,1),(3,2),(4$),(4,3),(4,4)}. Find