Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: BE Semester VII

Course Code: CSC701 and Course Name: Digital Signal and Image Processing (DSIP)

Time: 2 hour

Max. Marks: 80

Sample Question Paper

Objective Section							
Q1. Choose the correct option for following questions. All the Questions are compulsory							
and carry equal marks							
Question 1	A signal x[n] is anti symmetric or odd when						
Option A:	$x[-n] = x[n] \cdot x[n]$						
Option B:	$\mathbf{x}[\mathbf{n}] = -\mathbf{x}[\mathbf{n}]$						
Option C:	x[n] = [x[n]]2						
Option D:	x[-n] = -x[n]						
Question 2	The discrete impulse function is defined by						
Option A:	δ(n) = 1, n ≥ 0 = 0, n ≠ 1						
	δ(n) = 1, n = 0						
Option B:	= 0, n ≠ 0						
Option C:	$\delta(n) = 1, n \le 0$ = 0, n \neq 1						
Option D:	$\delta(n) = 1, n \le 0$ = 0, n \ge 1						
Question 3	System is said to be linear if it satisfies						
Option A:	Parseval's theorem						
Option B:	Superposition Principle						
Option C:	Sampling Theorem						
Option D:	Correlation						
Question 4	The process of converting discrete-time continuous valued signal into discrete-time discrete valued(digital) signal is known as:						
Option A:	Sampling						
Option B:	Quantization						
Option C:	Coding						
Option D:	Derivation						

Question 5	IIR and FIR systems stand for			
Option A:	Infinite Impulse Response and Finite Impulse Response			
Option B:	Infinite Impulse Request and Finite Impulse Response			
Option C:	Infinite Impulse Response and Finite Impulse Request			
Option D:	Infinite Impulse Request and Finite Impulse Request			
Question 6	The overlap save method is used to calculate			
Option A:	The discrete convolution between a sampled signal and a finite impulse response (FIR) filter			
Option B:	The discrete convolution between a sampled signal and an infinite impulse response (IIR) filter			
Option C:	The discrete convolution between a very long signal and a finite impulse response (FIR) filter			
Option D:	The discrete convolution between a very long signal and a infinite impulse response (IIR) filter			
Question 7	By symmetry property of Discrete Fourier Transform, for N point real valued sequence if $x(n)$ ->X(K) then, X(K) = ?			
Option A:	X*(N-K)			
Option B:	X*(K)			
Option C:	X(K+1)			
Option D:	X(K)			
Question 8	DTFT is the representation of			
Option A:	Periodic Discrete time signals			
Option B:	Aperiodic continuous signals			
Option C:	Periodic continuous signals			
Option D:	Aperiodic Discrete time signals			
	Which of the following property makes it possible to calculate 2D DET using 1D			
Question 9	Which of the following property makes it possible to calculate 2D DFT using 1D DFT?			
Option A:	conjugate symmetry			
Option B:	Separability			
Option C:	Time shift			
Option D:	Periodicity			
Question 10	How many complex additions are required to be performed in linear filtering of a sequence using FFT algorithm?			
Option A:	(N/2)logN			
Option B:	2Nlog2N			
Option C:	(N/2)log2N			
Option D:	Nlog2N			

Question 11	Two pixels p and q having gray values from V, the set of gray-level values used to define adjacency, are m-adjacent if:						
Option A:	If q is in N4(p) OR q is in ND(p) and the set N4 (p) \hat{a} \hat{C} N4 (q) has no pixels whose values are from V						
Option B:	If q is in N8 (p) OR q is in ND (p) and the set N8 (p) \hat{a}° N8 (q) has no pixels whose values are from V						
Option C:	If q is in N4 (p) OR q is in ND (p) and the set N4(p) \hat{a} O N4 (q) has pixels whose values are from V						
Option D:	If q is in N8 (p) OR q is in ND (p) and the set N8 (p) \hat{a} \hat{O} N8 (q) has pixels whose values are from V						
Question 12	The result of the application of thresholding operation with T=3 at a pixel p with gray value 5 of a 4 bpp is						
Option A:	15						
Option B:	7						
Option C:	255						
Option D:	0						
Question 13	The result of applying Intensity level slicing with background operation for r1=3 and r2=9 at pixel p with gray value 5 of 4 bpp is						
Option A:	0						
Option B:	15						
Option C:	255						
Option D:	7						
Question 14	With we can pass some of the backgrounds along with the high-frequency content.						
Option A:	High pass filtering						
Option B:	Low pass filtering						
Option C:	High boost filtering						
Option D:	Median filtering						
Question 15	In the digital image of M rows and N columns and L discrete gray levels, calculate the bits required to store a digitized image for M=N=32 and L=8.						
Option A:	16384						
Option B:	4096						
Option C:	8192						
Option D:	3072						
0							
Question 16	What would be the effect on the histogram if we set higher-order bit planes to zero?						
Option A:	Image becomes bright						
Option B:	Image becomes low constrast						

Option C:	Image becomes high constrast			
Option D:	Image becomes dark			
Question 17	Using which image format the quality of the image will be very good but storage will be large?			
Option A:	JPEG			
Option B:	BMP			
Option C:	TIFF			
Option D:	GIF			
Question 18	If a component of the histogram is concentrated on the low side of the gray scale it is a histogram of			
Option A:	Dark Image			
Option B:	Bright Image			
Option C:	Low constrast image			
Option D:	High constrast image			
Question 19	Which image processing techniques used to improve the overall appearance of an image for the human observer			
Option A:	Compression			
Option B:	Enhancement			
Option C:	Segmentation			
Option D:	Analysis			
Question 20	Which filter is best to remove salt and pepper noise?			
Option A:	Low pass			
Option B:	Sobel			
Option C:	Median			
Option D:	Laplacian			

Q2 (20 Marks Each)	Solve any Four out of Six	5 marks each
А	Write a note on distance measure	
В	Write a note on dynamic range compression	
С	Explain segmentation based on image discontinuities	

D	Justify that Median filter is best to remove salt and pepper noise				
Е	Write a note on distance measure				
F	Perform contrast stretching operation with r1=4, r2=12, s1=8, and s2=12, for the given image				
	4	5	9	14	
	4	6	11	14	
	3	6	5	11	
	3	8	8	9	
					-

Q3. (20 Marks Each)	Solve any Two Questions out of Three 10 marks each
А	If $x(n)=\{2,2,3,1,4,5,6\}$ obtain the following $x(-n)$, $x(n-1)$, $x(n+1)$, $x(-n+2)$, $x(2n)$. Draw graph for each obtained new signal.
В	If $x(n)=\{3,4,0,6\}$, find DFT X(K). Using obtained results not otherwise find DFT of the following sequences $x1(n)=\{6,3,4,0\}$
С	Find the DFT of the 8 point causal sequence using Radix 2 DIT-FFT $x(n)=\{2, 1, 2, 1, 1, 2, 1, 2\}$