Program: SE Computer Engineering

Curriculum Scheme: Revised 2012

Examination: Second Year semester: IV

Course Code: CSC406 and Course Name: Computer Graphics

Time: 1 hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	The roll-back of electron beams from one frame to another is referred to as and the roll-back of electron beams from one scanline to another is referred to as
Option A:	Vertical retrace, Horizontal retrace
Option B:	Anti-aliasing, Aspect ratio
Option C:	Horizontal retrace, Vertical retrace
Option D:	Aspect ratio, Anti-aliasing
Q2.	We can combine the multiplicative and translational terms for 2D into a single matrix representation by expanding
Option A:	2 by 2 matrix into 4*4 matrix
Option B:	2 by 2 matrix into 3*3
Option C:	3 by 3 matrix into 2 by 2
Option D:	3 by 3 matrix into 4*4
Q3.	Reflection of a point about x-axis, followed by a counter-clockwise rotation of 90 is equivalent to reflection about the line
Option A:	X=-Y
Option B:	Y=-X
Option C:	X=Y
Option D:	X+Y=1
Q4.	Two consecutive translations on t1 and t2 are and Two consecutive Scaling on t1 and t2 are
Option A:	Additive, Subtractive
Option B:	Subtractive, Additive
Option C:	Multiplicative, Additive
Option D:	Additive, Multiplicative
Q5.	Three types of axonometric projections are,,,
Option A:	Serial, Parallel, isometric
Option B:	Parallel, Perspective , Isometric
Option C:	Isometric, diametric, trimetric
Option D:	Parallel, Oblique, Normal
Q6.	The oblique projections are classified as and projections.

Option A:	Cavalier and Cabinet
Option B:	Serial & Parallel
Option C:	Parallel & Perspective
Option D:	Isometric & diametric
Q7.	In the Cohen Sutherland line clipping algorithm, if the codes of the two point P&Q
	are 0101 & 0001 then the line segment joining the points P&Q will be
	the clipping window.
Option A:	Totally outside
Option B:	Partially outside
Option C:	Totally inside
Option D:	Partially inside
Q8.	The orthographic projections have the projectors where
Option A:	The direction of these projectors is parallel to the view plane
Option B:	The direction of these projectors is perpendicular to the image plane
Option C:	The direction of these projectors is perpendicular to the view plane
Option D:	The direction of these projectors is parallel to the image plane
Q9.	In OpenGL, 2 in the glVertex2i() stands for
Option A:	Number of arguments
Option B:	Type of arguments
Option C:	Do not signify anything
Option D:	Number of times calling of function
Q10.	Line clipping algorithm uses parametric form of equation of line.
Option A:	Liang Barsky
Option B:	Cohen Sutherland
Option C:	Midpoint Subdivision
Option D:	Sutherland Hodgeman
Q11.	Consider the line from (1, 1) to (5,5). Use the simple DDA algorithm to rasterize this
	line. Which are the correct sequence of plotted pixels
Option A:	(2,2) (3,3) (4,5)
Option B:	(2,2) (3,4) (4,5)
Option C:	(2,3) (3,3) (4,5)
Option D:	(2,3) (3,4) (4,5)
012	
Q12.	In midpoint method of circle generation, if decision function (Pk) value is negative
	then decision function for the next iteration is given as otherwise
Option A.	Pk gets updated as
Option A:	Pk + 2 Xk+1 + 1 and Pk + 2 Xk+1 + 1 - 2Yk+1
Option B:	Pk + 2 Xk+1 - 1 and Pk - 2 Xk+1 + 1 - 2Yk+1
Option C:	Pk + 2 Xk+1 + 1 and Pk + 2 Xk+1 + 1 + 2Yk+1
Option D:	Pk -2 Xk+1 + 1 and Pk + 2 Xk+1 + 1 – 2Yk+1

Q13.	In the Midpoint ellipse generation method, after plotting pixel at (Xk,YK), at whic
	of the following location (position) the decision function is applied to decide the new
	pixel along the elliptical path in region 1?
Option A:	Pixel at (Xk-1, Yk-1/2) level
Option B:	Pixel at (Xk, Yk-1/2) level
Option C:	Pixel at (Xk+1, Yk-1/2) level
Option D:	Pixel at (Xk+1, Yk) level
Q14.	What is the initial value for the decision parameter in the midpoint circle algorithm
Option A:	5/4-r
Option B:	r-5/4
Option C:	r-4/5
Option D:	4/5-r
Q15.	is the example of non-seed fill algorithms.
Option A:	Boundary Fill
Option B:	Flood Fill
Option C:	Bucket Fill
Option D:	Scanline
Q16.	If the circle has to be drawn using a midpoint method with the center (10, 10) an
Q10.	radius 10, then which point will lie on the circle.
Option A:	(18,19)
Option B:	(9,10)
Option C:	(20,30)
Option D:	(12,20)
option D.	
Q17.	The method which is based on the principle of checking the visibility point at eac
	pixel position on the projection plane are called
Option A:	Object-space methods
Option B:	Image-space methods
Option C:	Object and Image space method
Option D:	Image based method
Q18.	A Bezier curve is a polynomial of degreethe no of control points used
Option A:	One more than
Option B:	One less than
•	One less than Two less than
Option C:	
Option C: Option D:	Two less than Two more than
Option C: Option D: Q19.	Two less than Two more than The types of hidden surface algorithms are
Option C: Option D: Q19. Option A:	Two less than Two more than The types of hidden surface algorithms are Z Buffer, Back face removal
Option B: Option C: Option D: Q19. Option A: Option B: Option C:	Two less than Two more than The types of hidden surface algorithms are

s is the
; is the
s is the
s is the
h
more
es, the
3[8 1]