University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Program: Computer Engineering

Curriculum Scheme: Rev2012

Examination: Second Year Semester IV

Course Code: CSC405 and Course Name: Theoretical Computer Scienec

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Context Sensitive grammar is which type of grammar in chomsky heirarchy
Option A:	Type-0
Option B:	Type-1
Option C:	Type-2
Option D:	Type-3
Q2.	Which of the following language is accepted by given DFA?
	start $\rightarrow \begin{array}{c} 0 & 1 \\ \hline q_0 & 0 \\ 1 & q_1 \end{array}$
Option A:	$\{w w ends with 0\}$
Option B:	{w w contains equal number of 0 and 1}
Option C:	{w w does not ends with 1}
Option D:	{w w contains 1 and ends with 0}
Q3.	In an given NFA with n states, the maximum number of states in an equivalent DFA is
Option A.	2
Option B:	2^n
Option C:	2^(n-1)
Option D:	log n
- r	
Q4.	Given $L = \{ab, baa\}$ which of the following is not in L^*
Option A:	ababaaab
Option B:	abbaaab
Option C:	baaabbaa
Option D:	baabaaab
Q5.	Compute the string accepted by given NFA.

	$0, 1$ q_3 0 q_3 q_3 q_4 0 q_1 q_2 1
	1
Ontion A:	All strings onding with 00
Option A:	All string onding with 00 and ampty string
Option C:	All strings containing 00
Option D:	All strings containing 00 and empty string
06	The number of states in minimum DFA corresponding to the language $(0+1)*(10)$
Option A:	2
Option B:	3
Option C:	4
Option D:	5
•	
Q7.	Which statement is TRUE?
Option A:	NFA computes on multiple paths simultaneously
Option B:	NFA computes on multiple paths but not simultaneously
Option C:	NFA computes on single paths simultaneously
Option D:	NFA computes on single paths but not simultaneously
Q8.	Which of the following string is accepted for given NFA
	start \rightarrow q_0 0 q_1 0 1 $0q_2 1 q_30$ 0
Option A:	1000101
Option B:	111010111
Option C:	1100001
Option D:	1000110
Q9.	Consider the grammar
	$S \rightarrow AB$

	$A \rightarrow aa ab ba bb$
	$B \rightarrow aBa bBb C$
	$C \rightarrow aa ab ba bb$
	Identify the string generated from given G.
Option A:	bababbab
Option B:	abaab
Option C:	aaabbabba
Option D:	babaa
Q10.	Consider the following DFA
	start $\rightarrow q_0$ b b q_2 a q_3 q_3 q_3 q_3 q_3 q_4 a, b
	What will be the number of states in minimum DFA for the given DFA.
Option A:	2
Option B:	3
Option C:	4
Option D:	5
Q11.	Which of the following regular expression determines the Grammar given below: $S \rightarrow aSb \mid epsilon$ $S \rightarrow aA \mid bB$ $A \rightarrow aA \mid bB \mid epsilon$ $B \rightarrow bB \mid aA \mid epsilon$
Option A:	$a^n(a+b)*b^n$ where $n > 0$
Option B:	$a^n(a+b)*b^n$ where $n = 0$
Option C:	$(a+b)^*$
Option D:	$\{a^{n}b^{n}n, n \ge 0\}$
Q12.	Identify the correct option for given Automaton $ \begin{array}{c} $
Option A:	(a+b)*
Option B:	(ab)*
Option C:	a*b*
Option D:	$a^*a + b^*$

Q13.	The regular expression $(a^* + b)^*$ is equivalent to which of the following?
Option A:	a*b*
Option B:	(a*b+b)*
Option C:	(a+b*)*
Option D:	(a*b)*
Q14.	Which of the following statement is TRUE?
Option A:	PDA is not an NFA with Stack
Option B:	Size of a stack of an PDA is finite
Option C:	PDA and CFG are equivalent
Option D:	PDA and CFG are not equivalent
Q15.	Which of the following statement TRUE?
Option A:	A language accepted by an regular expression is also accepted by some NFA and some DFA
Option B:	A language accepted by an regular expression is also accepted by some NFA but not necessarily accepted by some DFA
Option C:	A language accepted by na regular expression may not be accepted by NFA and DFA.
Option D:	A language accepted by an regular expression is also accepted by some DFA but not necessarily accepted by some NFA
Q16.	Regular expression is not closed under
Option A:	Intersection
Option B:	Difference
Option C:	Concatenation
Option D:	Union
017	
Q17.	Consider the given CFG $S \rightarrow ASA$ loD
	$S \rightarrow ASA aD$
	$A \rightarrow D S$ $B \rightarrow b ensilon$
	How many non terminals need to be added to convert the above grammar to
	CNF?
Option A:	1
Option B:	4
Option C:	2
Option D:	3
Q18.	Consider the Grammar
	1. $S \rightarrow AS$
	2. $S \rightarrow AAS$
	3. $A \rightarrow AS$
	4. $A \rightarrow aa$
	which of the following denies the format of CNF?
Option A:	2,4
Option B:	1,3

Option C:	1,2,3,4
Option D:	2,3,4
1	
Q19.	The GNF Grammar for the language
	$L = \{a^{n}b^{n+1} n \ge 0\}$ is
Option A:	$S \rightarrow aSB b, B>bB epsilon$
Option B:	$S \rightarrow aSB b, B>bB b$
Option C:	$S \rightarrow aSB b, B>b$
Option D:	$S \rightarrow aSB b, B>bb$
Q20.	Which of the following language is accepted by given PDA?
~	$a,\epsilon/0$
	$a,0/00$ $b,0/\epsilon$
	$\epsilon_{\epsilon}/\epsilon$ b_{0}/ϵ
	start \rightarrow (q_1) \rightarrow (q_2) (q_3)
	\sim \sim γ
	$\epsilon,\epsilon/\epsilon$
Oution A.	$(0 \land n 0 \land n \mid n > -0)$
Option A:	$\{0, 10, 10, 10, -0\}$
Option B:	$\{0^{n}, 1^{n}, n n \ge 0\}$
Option C:	$\{0, 1, 1, 1, 2, 3\}$
Option D:	$\frac{\{0^{n}n^{n}m n=2m\}}{1}$
021	
Q21.	
Option A:	
Option B:	
Option C:	Bont A & B
Option D.	Intersection
022	Which of the fallowing is the transition state for given DEA9
Q22.	which of the following is the transition state for given DFA?
	start $\rightarrow (q_0)$ b (q_1)
	b a
	ab
	12

Ontion A:	
Option A.	a b
	\rightarrow q_0 q_1 q_2
	$q_1 q_2 q_0$
	$* q_2 q_2 q_2$
Ontion D:	
Option B.	a b
	\rightarrow q_0 q_1 q_1
	q_1 q_2 q_2
	$*$ q_2 q_0 q_0
Option C:	a b
	\rightarrow q_0 q_1 q_2
	$q_1 q_2 q_1$
	* q_2 q_0 q_2
Option D:	a b
	$\rightarrow q_0 q_2 q_1$
	$q_1 q_0 q_2$
	* q_2 q_2 q_2 q_2
Q23.	Which of the following is true in a non deterministic halting TM ?
Option A:	The tape T is same as the input alphabet
Option B:	x belongs to L(M) if an only if M accepts x on only one computational path
Option C:	on an input x, M halts on all computational path
Option D:	x belongs to $L(M)$ if an only if M accepts x on atleast one computational path and
	may or may not halt on other computational paths
024	
Q24.	ϵ closure of q_0 is
	$\begin{pmatrix} q_2 \end{pmatrix}$
	b ¢
	e b b
	start \rightarrow $(q_0) \rightarrow$ $(q_1) \rightarrow$ (q_4)
	ϵ, a
	a ϵ
	$\left(\begin{array}{c} q_{3} \end{array} \right)$
Option A:	a1 a2 a3
Option R:	a0 a1 a2 a3
Option C.	a0 a1 a3 a4
Option D	a0 a1 a2 a3 a4
option D.	<u></u>

Q25.	The value of n in turing machine is defined using n-tuples:
Option A:	6
Option B:	7
Option C:	8
Option D:	5