Program: Computer Engineering

Curriculum Scheme: Rev2016 Examination: Third Year Semester III Course Code: CSC304 Course Name: Electronic Circuits and Communication Fundamentals

Time: 1 hour

Max. Marks: 50

Q1.	The output resistance is given by
Option A:	ΔVCE/ΔΙΒ
Option B:	$\Delta VBE/\Delta IB$
Option C:	ΔVBE/ΔIC
Option D:	ΔVCE/ΔIC
Q2.	If Voltage divider at base transistor is 5V and base current is 5uA than input
	resistance at base is
Option A:	1μΩ
Option B:	lmΩ
Option C:	1ΜΩ
Option D:	10 Ω
Q3.	Which of the following depicts the output characteristics of a CE transistor?
Option A:	IB
	V _{CE}
Option B:	IB
	Var
	V BE

<u> </u>	
Option C:	Ic
	VBE
Option D:	Ic
	V _{CE}
Q4.	The operating point of an NPN transistor amplifier should not be selected near the saturated region as it may
Option A:	Causes output signal to be clipped in positive half.
Option B:	Causes output signal to be clipped in negative half.
Option C:	Regular high DC supply
Option D:	Drive the transistor to thermal Runaway.
Q5.	If L1 and L2 are the inductance used in a Hartley oscillator, the effective inductance in the equation of frequency calculation is equal to (Without considering mutual inductance).
Option A:	$(L1 \times L2)/(L1 + L2)$
Option B:	L2/(L1+L2)
Option C:	L1+L2
Option D:	L1-L2
06	Which of the following is not a characteristics of crystal oscillator?
Option A^{\cdot}	Highly stable with time
Option B:	Highly stable with temperature
Option C:	Highly selective
Option D:	Frequency depends external resistors and capacitors
Q7.	Find the ideal voltage transfer curve of a normal op-amp.

Option C:	0.425
Option D:	0.14
•	
09.	How to keep the output voltage swing of the op-amp comparator within specific
	limits?
Option A:	External resistors or diodes are used
Option B:	External zeners or diodes are used
Option C:	External capacitors or diodes are used
Option D:	External inductors or diodes are used
Q10.	$ \begin{array}{c} C_{1} \\ \hline V_{in} \\ \hline U_{1} \\ \hline U_{1} \\ \hline U_{1} \\ \hline U_{0ut} \\ \hline \hline $
Option A:	Sine wave
Option B:	Square wave
Option C:	Sawtooth wave
Option D:	I riangle wave
011	The closed loop voltage gain of an inverting amplifier equals:
Q11.	The rotic to the input resistance to the feedback resistance
Option A:	The mer loop voltage gain
Option B:	The open loop voltage gain The feedback resistance divided by the input resistance
Option C:	The input resistance divided by the input resistance
Option D:	
012	A modulation index of 0.5 would be some as
Q12.	A modulation mate of 0.5 would be same as
Option R.	1/2% of Modulation Depth
Option D:	1/2% of Modulation Depth
Option C:	5% of Modulation Depth
Option D:	50% of Modulation Depth
Q13.	An AM transmitter has a percentage of modulation of 88. The carrier power is 440W. The power in one sideband is
Option A:	85W
Option B:	110W
Option C:	170W
Option D:	610W
Q14.	Which among the following is not necessarily the advantage of SSB over AM?
Option A:	required bandwidth for SSB is low

Option B:	less power handled
Option C:	complex circuit
Option D:	simple circuit
Q15.	A 100MHz carrier is frequency modulated by 10 KHz wave. For a frequency deviation of 50 KHz, calculate the modulation index of the FM signal.
Option A:	100
Option B:	50
Option C:	70
Option D:	90
•	
Q16.	Maximum frequency deviation and the maximum bandwidth allowed for commercial FM broadcast is
Option A:	80KHz, 160Khz
Option B:	75KHz, 200Khz
Option C:	60KHz, 170Khz
Option D:	75KHz, 250Khz
017.	A PAM signal can be detected using
Option A:	Low pass filter
Option B:	High pass filter
Option C:	Band pass filter
Option D:	All pass filter
•	
Q18.	The process of using a pulse signal to represent information is called
Option A:	Pulse modulation
Option B:	Frequency modulation
Option C:	Amplitude modulation
Option D:	Phase modulation
Q19.	In PWM signal reception, the Schmitt trigger circuit is used
Option A:	To remove noise
Option B:	To produce ramp signal
Option C:	For synchronization
Option D:	For asynchronization
Q20.	In Pulse Position Modulation, the drawbacks are
Option A:	Synchronization is required between transmitter and receiver
Option B:	Large bandwidth is required as compared to PAM
Option C:	Noise is increased
Option D:	Useful in less distance
Q21.	The information rate R for given average information $H=2.0$ for analog signal band
	limited to B Hz is
Option A:	8 B bits/sec
Option B:	4 B bits/sec
Option C:	2 B bits/sec
Option D:	16 B bits/sec

Q22.	Information rate is defined as
Option A:	Information per unit time
Option B:	Average number of bits of information per second
Option C:	rH
Option D:	Average number of bytes of information per second
Q23.	According to Shannon Hartley theorem,
Option A:	The channel capacity becomes infinite with infinite bandwidth
Option B:	The channel capacity does not become infinite with infinite bandwidth
Option C:	Has not a tradeoff between bandwidth and Signal to noise ratio
Option D:	The channel capacity does not become finite with infinite bandwidth
Q24.	Zero crossing detectors is also called as
Option A:	Square to sine wave generator
Option B:	Sine to square wave generator
Option C:	Sine to triangular wave generator
Option D:	Triangular wave generator
Q25.	An astable multivibrator is also known as a:
Option A:	One shot multivibrator
Option B:	Free running multivibrator
Option C:	Bistable multivibrator
Option D:	Monostable multivibrator