University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: Second Year Semester IV

Course Code: CSC402 and Course Name: Analysis of Algorithms

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Let G be a graph with 'n' nodes and let 'm' be the chromatic number of the graph.
-	Then the time taken by the backtracking algorithm to color it is
Option A:	O(m n m)
Option B:	O(m n 2m)
Option C:	O(m n 2n)
Option D:	O(n m n)
.	
Q2.	The term refers to all state space search methods in which all children
~	of the –nodes are generated before any other live node can become the E-node.
Option A:	Branch & Bound
Option B:	Backtracking
Option C:	Breadth First Search
Option D:	Depth First Search
.	
Q3.	What happens when the backtracking algorithm reaches a complete solution?
Option A:	It backtracks to the root
Option B:	It continues searching for other possible solutions
Option C:	It traverses from a different route
Option D:	Recursively traverses through the same route
Q4.	Of the following given options, which one of the following is a correct option that
_	provides an optimal solution for the 4-queens problem?
Option A:	(4, 3, 2, 1)
Option B:	(2, 3, 1, 4)
Option C:	(3, 1, 4, 2)
Option D:	(4, 2, 3, 1)
Q5.	Consider two strings $A =$ "babcc" and $B =$ "abacbca". Let x be the length of the
	longest common subsequence (not necessarily contiguous) between A and B and
	let y be the number of such longest common subsequences between A and B.
	Then x and y are:
Option A:	4, 3
Option B:	3,4
Option C:	4, 2
Option D:	3, 2

Q6.	What will be the chromatin number for the below graph considering every circle as a node.
Option A:	3
Option B:	4
Option C:	5
Option D:	6
Q7.	How many solutions are possible for the following sum of subset problem & $M = 35$, $W = \{5, 7, 10, 12, 15, 18, 20\}$
Option A:	3
Option B:	3
Option C:	4
Option D:	5
Q8.	Spurious Hit occurs in which algorithm?
Option A:	Naive String Matching Algorithm
Option B:	Rabin Karp Algorithm
Option C:	Knuth Morris Pratt ALgorithm
Option D:	Longest Common Subsequence
Q9.	Find pattern = "c b a b a b" in the text = "c b a c b a b c b a b a b a a b" using naïve string matching approach.
Option A:	Pattern is not present
Option B:	Pattern is present from index position 0
Option C:	Pattern is present from index position 3
Option D:	Pattern is present from index position 7
Q10.	is the class of decision problems that can be solved by non-deterministic polynomial algorithms?
Option A:	NP
Option B:	Р
Option C:	Hard
Option D:	Complete

Q11.	To which of the following class does a CNF-satisfiability problem belong?
Option A:	P Class
Option A: Option B:	NP Class
Option C:	NP Complete
Option D:	NP Hard
Q12.	Using brute force method how many combinations we need to check to find 4-clique in the below 7 vertex graph.
Option A:	28
Option B:	35
Option C:	840
Option D:	2401
Q13.	Algorithm Add(a, b, c, m, n) { for i = 1 to m do for j = 1 to n do
	c[i, j] = a[i, j] + b[i, j]; } The complexity of the above given algorithm is
Option A:	$\Theta(m)$
Option B:	$\Theta(n)$
Option C:	$\Theta(m+n)$
Option D:	$\Theta(mn)$
Q14.	The best case complexity of insertion sort algorithm is
Option A:	O(log n)
Option B:	O(n)
Option C:	$O(n \log n)$
Option D:	O(n2)
Q15.	Which of the following methods uses mathematical induction for solving recurrences?
Option A:	Substitution method
Option B:	Recursion-tree method
Option C:	Master method
Option D:	Iterative method
Q16.	Apply a master method to solve the given recurrence and identify the correct option. T(n) = 9T(n/3) + n
Option A:	T(n) = 9T(n/3) + n. $T(n) = \Theta(n)$
· · · · ·	
Option B:	$T(n) = \Theta(n \log n)$ $T(n) = \Theta(n2)$
Option C:	$T(n) = \Theta(n2)$ $T(n) = \Theta(\log n)$
Option D:	$T(n) = \Theta(\log n)$
017	The everage appearant levity of Quick cost is
Q17.	The average case complexity of Quick sort is

Option B: Option C: Option D: Q18. Option A: Option B:	O(n) O(log n) O(n log n) O(n2) Computation of the resultant matrix using Strassen's matrix multiplication method involves 8 multiplications and 4 additions or subtractions
Option C: Option D: Q18. Option A: Option B:	O(n log n) O(n2) Computation of the resultant matrix using Strassen's matrix multiplication method involves
Option D: Q18. Option A: Option B:	O(n2) Computation of the resultant matrix using Strassen's matrix multiplication method involves
Q18. Option A: Option B:	Computation of the resultant matrix using Strassen's matrix multiplication method involves
Option A: Option B:	method involves
Option A: Option B:	method involves
Option A: Option B:	
Option B:	8 multiplications and 4 additions or subtractions
1	1
Option C:	7 multiplications and 18 additions or subtractions
	7 multiplications and 4 additions or subtractions
Option D:	8 multiplications and 18 additions or subtractions
Q19.	The minimum cost of the spanning tree for the given graph is
	a 1 b 2 5 4
Ontion A:	
	2
	6
1	7
Option D:	8
	Identify the maximum profit earned for the job sequencing with deadlines problem where, item : $n=\{1, 2, 3, 4\}$, profit $p=\{50, 60, 45, 65\}$, deadline $d=\{1, 2, 3, 2\}$
Option A:	160
	175
-	155
	170
	Identify the maximum profit earned by the following instance of the knapsack problem: $n = 3$, $m = 17$, $(p1, p2, p3) = (25, 24, 15)$ and $(w1, w2, w3) = (18, 15, 10)$.
Option A:	25
Option B:	24.25
	28.2
	27
1	
~	The longest common sequence for $X = \langle ABABABBA \rangle$ and $Y = \langle BBABAAA \rangle$ is

Option B:	AABB
Option C:	BABA
Option D:	AABA
Q23.	Identify the maximum profit earned by the following instance of the $0/1$ knapsack problem. n=4, (w1, w2, w3, w4) = (2, 3, 5, 7) and (p1, p2, p3) = (3, 4, 5, 6) and
	m=5 kg.
Option A:	6
Option B:	7
Option C:	8
Option D:	9
Q24.	Which of the following problems should be solved using dynamic programming?
Option A:	Quick sort
Option B:	Optimal storage on tapes
Option C:	Longest common subsequence
Option D:	Binary search
Q25.	Bellman Ford algorithm is used to find
Option A:	Minimum cost spanning tree
Option B:	All pairs shortest path
Option C:	Optimal storage on tapes
Option D:	Single source shortest path